Question 3.10: Shrink/interference fit A pair of mild steel cylinders (E = ...

Shrink/interference fit

A pair of mild steel cylinders (E = 200 GPa) of equal length have the following dimensions:

(1) 40 mm bore and 80.06 mm outside diameter

(2) 80 mm bore and 120 mm outside diameter

i.e. there is a diametral interference of 0.06 mm. The larger cylinder is heated, placed around, and allowed to shrink onto, the smaller cylinder. Calculate the stresses after assembly.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Conditions
• After assembly, the radial interference pressure, p, will be the same on both cylinders, i.e. cylinder 1 will have an external pressure, p, and cylinder 2 will have an internal pressure, p, as indicated in Figure 3.99.
• The decrease in the outside radius of cylinder 1, i_{1}, plus the increase in the inside radius of cylinder 2, i_{2}, will be equal to the radial interference, i.e. i = i_{1} +  i_{2}.
• Axial stresses are assumed to be zero (or negligible).

For cylinder 1:

                                    \sigma _{r} = A_{1}  –  \frac{B_{1}}{r^{2}}

and

                                    \sigma _{\theta } = A_{1} + \frac{B_{1}}{r^{2}}

at r = 20 mm, \sigma _{r} =0,

                                 B_{1} = 400A_{1}

at r = 40 mm (no significant difference with 40.03 mm), \sigma _{r} = –  p

          –  p = A_{1}  –  \frac{20^{2}}{40^{2}} A_{1} = A_{1}  –  \frac{400}{1600} A_{1}

 

                                                            A_{1} = – \frac{4}{3} p

and

                                            B_{1} = – \frac{1600}{3}p

Thus

                    (\sigma _{r})_{1} = – \frac{4p}{3} \left(1  –  \frac{400}{r^{2}} \right)

and

                    (\sigma _{\theta })_{1} = – \frac{4p}{3} \left(1 + \frac{400}{r^{2}} \right)

 

                    \varepsilon _{\theta } = \frac{u}{r} = \frac{1}{E}(\sigma _{\theta }  –  \nu (\sigma _{r } + \sigma _{z })) = \frac{1}{E}(\sigma _{\theta }  –  \nu \sigma _{r })

At the outside of cylinder 1, r = 40 mm,

                            \frac{-  i_{1}}{40} = \frac{1}{200   000}(\sigma _{\theta }  –  \nu \sigma _{r})

i.e.                      \frac{-  i_{1}}{40} = \frac{1}{200   000} \left(-  \frac{4p}{3} \right)\left(1 + \frac{400}{1600}  –  \nu \left(1 – \frac{400}{1600} \right) \right)

 

i_{1} = \frac{8p}{30  000} \left(\frac{5}{4}  –  \frac{3\nu }{4} \right)

 

              i_{1} = \frac{2p}{30  000} \left(5  –  3 \nu \right)

For cylinder 2

                              \sigma _{r} = A_{2}  –  \frac{B_{2}}{r^{2}}

and

                         \sigma _{\theta } = A_{2} + \frac{B_{2}}{r^{2}}

at r = 60 mm, \sigma _{r} =0

                            B_{2} = 3600 A_{2}

at r = 40 mm, \sigma _{r} = –  p

              –  p = A_{2}  –  \frac{60^{2}}{40^{2}}A_{2} = A_{2}  –  \frac{3600}{1600}A_{2}
i.e.                                   A_{2} = \frac{4}{5} p

and

                            B_{2} = 3600 \times \frac{4}{5}p

Thus,

                          (\sigma_{r})_{2} = \frac{4p}{5} \left(1 – \frac{3600 }{r^{2}} \right)

and

                        (\sigma_{\theta })_{2} = \frac{4p}{5} \left(1 + \frac{3600 }{r^{2}} \right)\\[0.5 cm]\varepsilon _{\theta } = \frac{u}{r} = \frac{1}{E}(\sigma _{\theta } – \nu (\sigma _{r } + \sigma _{z })) = \frac{1}{E}(\sigma _{\theta }-\nu \sigma _{r })

At the inside of cylinder 2, r = 40 mm,

          \frac{+ i_{2}}{40} = \frac{1}{200  000} \left( \frac{4p}{5} \right)\left(1 + \frac{3600}{1600} – \nu \left(1 – \frac{3600}{1600} \right) \right)

i.e.                                   i_{2} = \frac{8p}{50  000} \left(\frac{13}{4} + \frac{5\nu }{4} \right)

                                    i_{2} = \frac{2p}{50  000} \left(13 + 5 \nu \right)

But i_{1} + i_{2} = i = 0.03  mm

                        \frac{2p}{30  000}(5  –  3\nu ) + \frac{2p}{50  000}(13 + 5\nu ) = 0.03

 

                             \frac{10p}{30  000}  –  \frac{2\nu p}{10  000}+ \frac{26p}{50  000} + \frac{2\nu p}{10  000} = 0.03

 

                    \frac{50p + 78p}{150  000} = 0.03

i.e.           p = \frac{4500}{128} N/mm^{2}

For cylinder 1,

           (\sigma _{r})_{1} = –  46.9\left( 1 – \frac{400}{r^{2}} \right)

 

           (\sigma _{\theta })_{1} = –  46.9\left( 1 + \frac{400}{r^{2}} \right)

and for cylinder 2,

             (\sigma _{r})_{2} = 28.2\left( 1 – \frac{3600}{r^{2}} \right)

 

                (\sigma _{\theta })_{2} = –  46.9\left( 1 + \frac{3600}{r^{2}} \right)

 

3.99
3.100

Related Answered Questions

Question: 3.16

Verified Answer:

There is no restraint or applied loading (i.e. P =...