Question 6.4: Find the steady-state response of each mass in the following...

Find the steady-state response of each mass in the following two-degrees-offreedom system to a sinusoidal force of amplitude 10 N and frequency 6 Hz applied to the 1 kg mass.

6.68
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using the method presented in Section 6.2, the equations of motion, natural frequencies and modal vectors are obtained first.

\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{Bmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \end{Bmatrix} + \begin{bmatrix}2000 & – 1000 \\ – 1000 & 2000 \end{bmatrix}\begin{Bmatrix} x_{1} \\ x_{2} \end{Bmatrix} = \begin{Bmatrix} p_{1}(t) \\ 0 \end{Bmatrix}

The eigenvalues are \omega _{1}^{2} = 634  s^{-2} and \omega _{2}^{2} = 2366  s^{-2} giving natural frequencies of 4.0 Hz and 7.7 Hz respectively.

The corresponding mode shape vectors are

\left\{X\right\}_{1} = \begin{Bmatrix} X_{11} \\ X_{21} \end{Bmatrix} = \begin{Bmatrix} 0.732 \\ 1.0 \end{Bmatrix}     and    \left\{X\right\}_{2} = \begin{Bmatrix} X_{12} \\ X_{22} \end{Bmatrix} = \begin{Bmatrix} -2.732 \\ 1.0 \end{Bmatrix}

These vectors are scaled by making X_{2} = 1.0 for each mode. Using equations (6.58) and (6.59), the modal mass and modal stiffness values are:

For r = s,        \left\{X\right\}_{r}^{T} [M] \left\{X\right\}_{r} = M_{r}                         (6.58)
and           \left\{X\right\}_{r}^{T} [K] \left\{X\right\}_{r} = K_{r}                        (6.59)

M_{1} = 2.54, M_{2} = 9.46, K_{1} = 1608 and K_{2} = 22  392.
Rescaling to unit modal mass using equation (6.58) gives the new modal matrix:

[\Phi ] = \begin{bmatrix} 0.460 & –  0.888 \\ 0.628 & 0.325 \end{bmatrix}

Using the new modal matrix, the reader is left to confirm that [\Phi ]^{T}[K][\Phi ]= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} and that [\Phi ]^{T}[K][\Phi ] = \begin{bmatrix} 634 & 0 \\ 0 & 2366 \end{bmatrix} As mentioned earlier, the new modal stiffnesses of K_{1} = 634 and K_{2} = 2366 are numerically equal to the squares of the corresponding natural frequencies.
From \begin{Bmatrix} f(t) \end{Bmatrix} =[\Phi ]^{T}\begin{Bmatrix} p(t) \end{Bmatrix}, the modal forces are
\begin{Bmatrix} f_{1}(t) \\ f_{2}(t) \end{Bmatrix} = \begin{bmatrix}0.460 & 0.628 \\ –  0.888 & 0.325 \end{bmatrix} \begin{Bmatrix} p_{1}(t) \\ 0 \end{Bmatrix} = \begin{Bmatrix} 0.460 \times p_{1}(t) \\ –  0.888 \times p_{1}(t) \end{Bmatrix}

The modal equation for mode 1 is

               \ddot{q}_{1} + \omega _{1}^{2} q_{1} = f_{1}(t)

or                  \ddot{q}_{1} + 634q_{1} = 0.460p_{1}(t)             (6.66)

For the steady-state response, put p_{1} = 10e^{i\omega t} q_{1} and q_{1} = Q^{\star}_{1} e^{i\omega t} into (6.66) with an excitation frequency of 6 Hz to give:

Q_{1}^{\star } = \frac{4.60}{634  –  (6 \times 2\pi )^{2}} = –  0.005  84

Similarly for mode 2,

Q_{2}^{\star } = \frac{-  8.88}{2366  –  (6 \times 2\pi )^{2}} = –  0.009  40

From equation (6.65),

x_{j}(t) = \sum\limits_{r}{u_{jr}q_{r}(t)}                     (6.65)

\begin{Bmatrix} X_{1}^{\star} e^{i\omega t} \\ X_{2}^{\star} e^{i\omega t} \end{Bmatrix} = \begin{bmatrix} 0.460 & –  0.888 \\0.628 & 0.325\end{bmatrix} \begin{Bmatrix} Q_{1}^{\star}e^{i\omega t} \\ Q_{2}^{\star}e^{i\omega t} \end{Bmatrix}

Hence,      X_{1}^{\star} = 0.460 \times Q_{1}^{\star}  –  0.888 \times Q_{2}^{\star} = 5.66  mm

and          X_{2}^{\star} = 0.628 \times Q_{1}^{\star} + 0.325 \times Q_{2}^{\star} = –  6.72  mm

Notice that X_{1}^{\star} is positive, showing that mass 1 moves in phase with the force applied to it, while the negative sign for X_{2}^{\star} shows that mass 2 moves 180° out of phase with the applied force.
Repeating the exercise across a range of frequencies, the modal responses and the displacements of the two masses are as shown in Figures 6.69 and 6.70.

fig6.69
fig6.70

Related Answered Questions