Question 13.15: Determine the horizontal and vertical components of the defl...

Determine the horizontal and vertical components of the deflection of the free end of the cantilever shown in Fig. 13.18. The second moments of area of its unsymmetrical section are I_z,I_y and I_{zy} .

F13.18
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The bending moments at any section of the beam due to the applied load W are

M_z = −W(L − x), \ \ \ M_y = 0

Then Eq. (13.14) reduces to

\frac{d^2u}{dx^2} = \frac{M_yI_z – M_zI_{zy}}{E(I_zI_y – I_{zy}^2)}                                         (13.14)

\frac{d^2u}{dx^2} =\frac{W(L-x)I_{zy}}{E(I_zI_y-I_{zy}^2)}                                             (i)

Integrating with respect to x

\frac{du}{dx} =\frac{WI_{zy}}{E(I_zI_y-I_{zy}^2)} \left(Lx-\frac{x^2}{2}+C_1 \right)

When x = 0, (du/dx) = 0 so that C_1 = 0 and

\frac{du}{dx} =\frac{WI_{zy}}{E(I_zI_y-I_{zy}^2)} \left(Lx-\frac{x^2}{2} \right)                                                   (ii)

Integrating Eq. (ii) with respect to x

u=\frac{WI_{zy}}{E(I_zI_y-I_{zy}^2)} \left(\frac{Lx^2}{2} – \frac{x^3}{6} + C_2 \right)

When x = 0, u = 0 so that C_2 = 0. Therefore

u=\frac{WI_{zy}}{6E(I_zI_y-I_{zy}^2)} \left(3Lx^2 – x^3 \right)                                                   (iii)

At the free end of the cantilever where x = L

u_{fe}=\frac{WI_{zy}L^3}{3E(I_zI_y-I_{zy}^2)}                                                      (iv)

The deflected shape of the beam in the xy plane is found in an identical manner from Eq. (13.15) and is

\frac{d^2v}{dx^2} = \frac{M_zI_y – M_yI_{zy}}{E(I_zI_y – I_{zy}^2)}                                                       (13.15)

v=-\frac{WI_y}{6E(I_zI_y-I_{zy}^2)} (3Lx^2-x^3)                                                               (v)

from which the deflection at the free end is

v_{fe}=-\frac{WI_yL^3}{3E(I_zI_y-I_{zy}^2)}                                                   (vi)

The absolute deflection, δ_{fe} , at the free end is given by

δ_{fe} = (u^2_{fe} + v^2_{fe})^{\frac{1}{2} }                                                            (vii)

and its direction is at tan^{−1}(u_{fe}/v_{fe}) to the vertical.

Note that if either Gz or Gy is an axis of symmetry I_{zy} = 0 and Eqs. (iv) and (vi) reduce
to

u_{fe}=0 \ \ \ v_{fe}= – \frac{WL^3}{3EI_z}       (compare with Eq. (v) of Ex. 13.1)

Related Answered Questions

Question: 13.20

Verified Answer:

The resultant bending moment diagram is shown in F...
Question: 13.10

Verified Answer:

In this problem an external moment M_0 [/l...