Question 5.16: The second half of Example 5.14 is now calculated by using E...
The second half of Example 5.14 is now calculated by using Equation 5.35. A_1 and A_2 have specified T, while A_4 and A_5 have specified q. Then Equation 5.35 yields
\sum\limits_{j=1}^{N}{[\delta _{kj}-(1-\epsilon _k)F_{k-j}]J_j}=\epsilon _k\sigma T^4_k 1\leq k\leq m (5.35a)
\sum\limits_{j=1}^{N}{[\delta _{kj}-F_{k-j}]J_j}=\frac{Q_k}{A_k} m+ 1\leq k\leq N (5.35b)
Learn more on how we answer questions.
J_1-(1-\epsilon _1)[F_{1-2}J_2+F_{1-4}J_4+F_{1-5}J_5] =\epsilon _1\sigma T_1^4
J_2-(1-\epsilon _2)[F_{2-1}J_1+F_{2-4}J_4+F_{2-5}J_5] =\epsilon _2\sigma T_2^4
-F_{4-1}J_1-F_{4-2}J_2+J_4-F_{4-5}J_5=q_4
-F_{5-1}J_1-F_{5-2}J_2-F_{5-4}J_4+J_5=q_5
The solution yields J in W/m^2: J_1 = 3277, J_2 = 9741, J_4 = 8370, and J_5 = 11,048. Then from Equation 5.15,
\frac{Q_k}{A_k}=q_k=\frac{\epsilon _k}{1-\epsilon _k}(\sigma T^4_k-J_k) (5.15)
q_1=[\epsilon _1/(1-\epsilon _1)](\sigma T^4_1-J_1) and similarly for q_2. From Equation 5.17,
J_k=\sigma T^4_k-\frac{1-\epsilon _k}{\epsilon _k}q_k or \sigma T^4_k=\frac{1-\epsilon _k}{\epsilon _k}q_k+J_k (5.17a,b)
\sigma T_4^4=[\epsilon _4/(1-\epsilon _4)]q_4+J_4 and similarly for T_5 . This provides the same results as for Example 5.14.