Question 5.17: Figure 5.14 is a two-dimensional rectangular enclosure that ...

Figure 5.14 is a two-dimensional rectangular enclosure that is long in the direction normal to the cross section shown. All the surfaces are diffuse-gray and their temperatures and emissivities are given. For simplicity, the four sides are not subdivided.

 

5.14
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The configuration factors are obtained by the crossed-string method as F_{1-3}=F_{3-1}= 0.2770,F_{2-4}=F_{4-2}=0.5662,F_{1-2}=F_{1-4}=F_{3-2}=F_{3-4}=0.3615, and F_{4-1}=F_{4-3}=F_{2-1}=0.2169. In what follows an abbreviated notation is used E=(1-\epsilon )/\epsilon ,\vartheta =T^4, and  F_{kj}=F_{k-j}. Then the four equations from Equation 5.29 are

\sum\limits_{j=1}^{N}{\left\lgroup \frac{\delta _{kj}}{\epsilon _j} -F_{k-j}\frac{1-\epsilon _j}{\epsilon _j} \right\rgroup } \frac{Q_j}{A_j} =\sum\limits_{j=1}^{N}{\left(\delta _{kj}-F_{k-j}\right)\sigma T_j^4=\sum\limits_{j=1}^{N}{F_{k-j}} \sigma \left(T^4_k-T_j^4\right) }                 (5.29)

\frac{q_1 }{\epsilon _1}-q_2F_{12}E_2-q_{3}F_{13}E_3 -q_{4}F_{14}E_4=\sigma (\vartheta _1-F_{12}\vartheta _2-F_{13}\vartheta _3-F_{14}\vartheta _4)

-q_1F_{21}E_1+\frac{q_1 }{\epsilon _1}-q_{3}F_{23}E_3 -q_{4}F_{24}E_4=\sigma (-F_{21}\vartheta _1+\vartheta _2-F_{23}\vartheta _3-F_{24}\vartheta _4)

-q_1F_{31}E_1-q_{2}F_{32}E_2+\frac{q_3 }{\epsilon _3} -q_{4}F_{34}E_4=\sigma (-F_{31}\vartheta _1-F_{32}\vartheta _2+\vartheta _3-F_{34}\vartheta _4)

-q_1F_{41}E_1-q_{2}F_{42}E_2 -q_{3}F_{43}E_3+\frac{q_4 }{\epsilon _4}=\sigma (-F_{41}\vartheta _1-F_{42}\vartheta _2-F_{44}T_3+\vartheta _4)

All quantities except the q´s are known. Substitution and solution by a computer software package gives q_1 = –2876.52, q_2 = 1612.53, q_3 = 1508.92, q_4 = –791.97 W/m^2.

Now the method in Section 5.3.2 is used. In Equation 5.37, it is noted that the Γ_{jk} have the same matrix of coefficients for all k. There are four sets of four equations, one set for each k, and within each set j has values 1, 2, 3, and 4. The matrix of the Γ coefficients is (note that the F_{kk} = 0 for this example)

(1-F_{1-1}\rho _1)\Gamma _{1k}-F_{1-2} \rho _2\Gamma _{2k}-F_{1-3} \rho _3\Gamma _{3k}-……-F_{1-N}\rho _N\Gamma _{Nk}=F_{1-k}\epsilon _k

-F_{2-1} \rho _1\Gamma _{1k}+(1-F_{2-2}\rho _2)\Gamma _{2k}-F_{2-3} \rho _3\Gamma _{3k}-……-F_{2-N}\rho _N\Gamma _{Nk}=F_{2-k}\epsilon _k

-F_{3-1} \rho _1\Gamma _{1k}-F_{3-2} \rho _2\Gamma _{2k}+(1-F_{3-3}\rho _3)\Gamma _{3k}-……-F_{3-N}\rho _N\Gamma _{Nk}=F_{3-k}\epsilon _k

.                                         .                               .

 .                                       .                               .                  (5.37)

 .                                       .                               .

-F_{N-1} \rho _1\Gamma _{1k}-F_{N-2} \rho _2\Gamma _{2k}-F_{N-3} \rho _3\Gamma _{3k}-……+(1-F_{N-N}\rho _N)\Gamma _{Nk}=F_{N-K}\epsilon _k

m=\left[\begin{matrix}1 & \rho _{2}F_{12} & \rho _{3}F_{13}&-\rho _{4}F_{14} \\ -\rho _{1}F_{21} & 1 & -\rho _{3}F_{23} & -\rho _{4}F_{24} \\ -\rho _{1}F_{31} & -\rho _{2}F_{32} &1 & -\rho _{4}F_{34} \\ -\rho _{1}F_{41} & -\rho _{2}F_{42} &-\rho _{2}F_{24} &1 \end{matrix}\right]

When the values are substituted into this matrix it becomes

m=\left[\begin{matrix}1 &− 0.25306 & − 0. 04155 &−0.19883 \\ − 0 .06507 & 1 & −0.03254 & -0.31140 \\ -0.08310 & -0.25306 & 1 & -0.19883 \\ -0.06507 & -0.39633 &-0.03254 &1 \end{matrix}\right]

The matrix of the four columns of values on the right-hand sides of the four sets of equations is, in symbolic and numerical form,

f=\left[\begin{matrix}F_{11}\epsilon _1 &F_{12}\epsilon _2 &F_{13}\epsilon _3&F_{14}\epsilon _4 \\F_{21}\epsilon _1 & F_{22}\epsilon _2 & F_{23}\epsilon _3 & F_{24}\epsilon _4 \\ F_{31}\epsilon _1 & F_{32}\epsilon _2 & F_{33}\epsilon _3 & F_{34}\epsilon _4\\ F_{41}\epsilon _1 & F_{42}\epsilon _2 & F_{43}\epsilon _3 & F_{44}\epsilon _4 \end{matrix}\right]

f=\left[\begin{matrix}0 &0.10845 &0.23544 & 0.16268\\0.15183 & 0 & 0. 18437 & 0.25479 \\0.19389 & 0.10845 & 0& 0.16268\\ 0.15183 & 0.16986 &0.18437 & 0 \end{matrix}\right]

The matrix of Γ_{kj} factors is obtained by matrix inversion as [Γ_{kj}] = m^{−1}f,

\Gamma =\left[\begin{matrix}0.13233 &0.18271 &0.39315 & 0.29181\\0.25579 & 0.08738 & 0.32299 & 0.33384 \\0.32377 & 0.19000 & 0.18278 & 0.30345\\ 0.27236 & 0.22256 &0.34391 & 0.16117 \end{matrix}\right]

By summing values in each row, it is evident that \sum\limits_{j=1}^{4}{\Gamma _{kj}}=1. The q are then found from Equation 5.39,

Q_k=A_k\epsilon _k\sigma T^4_k\sum\limits_{j=1}^{N}{\Gamma _{kj}}-\sum\limits_{j=1}^{N}{A_k\epsilon _k \Gamma_{kj} \sigma T^4_j}=A_k\epsilon _k\sum\limits_{j=1}^{N}{\Gamma _{kj}\sigma \left(T^4_k-T^4_j\right) }                   (5.39)

and they agree with the values given previously.

The solution is now obtained by the method in Section 5.3.3. The coefficient matrix for the set of Equations 5.45a,b is

\sum\limits_{j=1}^{N}{\left(\frac{\delta _{kj}}{\epsilon _j}-F_{k-j}\frac{1-\epsilon _j}{\epsilon _j} \right)q_j=-F_{k-n } } (k\neq n)                       (5.45a)
\sum\limits_{j=1}^{N}{\left(\frac{\delta _{nj}}{\epsilon _j}-F_{n-n}\frac{1-\epsilon _j}{\epsilon _j} \right)q_j=-F_{k-n } }           (5.45b)

D=\begin{bmatrix} 1/\epsilon _1 & -\rho _2(F_{12}/\epsilon _2)& -\rho _3(F_{13}/\epsilon _3)& -\rho _4(F_{14}/\epsilon _4) \\ -\rho _1(F_{21}/\epsilon _1) & 1/\epsilon _2 &-\rho _3(F_{23}/\epsilon _3)&-\rho _4(F_{24}/\epsilon _4)\\-\rho _1(F_{31}/\epsilon _1) &-\rho _2(F_{32}/\epsilon _2)&1/\epsilon _3&-\rho _4(F_{34}/\epsilon _4)\\ -\rho _1(F_{41}/\epsilon _1) &-\rho _2(F_{24}/\epsilon _2)&-\rho _3(F_{43}/\epsilon _3)&1/\epsilon _4\end{bmatrix}

and this gives in numerical form

D=\begin{bmatrix}1 .42857 & -0.84352& -0.04888& -0.44184 \\ -0.09296 & 3.33333 &-0.03828&-0.69201\\-0.11871 &-0.84352& 1.17647 &-0.44184\\ -0.09296&-1.32111&-0.03828&2.22222\end{bmatrix}

The matrix for the right-side coefficients of Equation 5.45a,b to determine –q is (note that F_{nm} = 0 for this example)

M=\begin{bmatrix}-1 & F_{12}& F_{13}& F_{14} \\ F_{21} & -1 &F_{23}&F_{24}\\F_{31} &F_{32}& -1 &F_{34}\\ F_{41} &F_{42}&F_{43}&-1\end{bmatrix}

To relate the – q and \mathscr{F} from Equation 5.44, the emissivity matrix is

F_{kn}=-q_k (k\neq n)             (5.44)
F_{nn}=-q_n + \epsilon _n

\epsilon =\begin{bmatrix} \epsilon _{1} & 0 & 0 & 0\\ 0 & \epsilon _2 & 0& 0\\0& 0&\epsilon _3& 0& \\ 0& 0& 0& \epsilon _4\end{bmatrix}

Then, according to Equation 5.44, the F factors are obtained from the matrix operations

\mathscr{F} =D^{−1}M+ a

This yields the matrix of \mathscr{F} values:

\mathscr{F} =\begin{bmatrix} 0.09263 & 0.12790 & 0.27520 & 0.20427\\ 0.07674 & 0.02621 & 0.09690& 0.10015\\0.27520& 0.16150 &0.15537& 0.25793 \\0.12256&0.10015 &0.15476 &0.07253 \end{bmatrix}

From these values, it is evident that there is the relation \mathscr{F}_{kj} = ϵ_kG_{kj}   as in Equation 5.41. The q are computed from Equation 5.40, and the values are the same as before.

Q_k=A_k\sum\limits_{j=1}^{N}{\mathscr{F}_{kj}\sigma \left(T^4_k-T^4_j\right) } (1\leq k\leq N)                 (5.40)

\mathscr{F}_{kj} =\epsilon _kG_{kj}           (5.41)

Related Answered Questions