Question 8.15: For the following thrust bearing (Fig. 8.21), show that the ...

For the following thrust bearing (Fig. 8.21), show that the force on the straight slider in the x-direction is the same as that on the guide.

8.15
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

It is given that the velocity profile is

 

\frac{u}{U}=\left(1-\frac{y}{h}\right)\left[1-3 \frac{y}{h}\left(1-\frac{2}{n+1} \frac{h_{1}}{h}\right)\right]

 

and load

 

P=\frac{6 \mu U L^{2}}{h_{2}^{2}(n-1)^{2}}\left[\ln n-\frac{2(n-1)}{n+1}\right]

 

where n=h_{1} / h_{2}

 

Force on the slider in the x-direction is

 

F_{s}=\int_{0}^{L} \tau_{s} d x(1) \frac{\cos \alpha}{\cos \alpha}+\int_{0}^{L}\left(p-p_{0}\right) \frac{ d x}{\cos \alpha}(1) \sin \alpha

 

=\int_{0}^{L} \tau_{s} d x+\tan \alpha \int_{0}^{L}\left(p-p_{0}\right) d x

 

Now, \tau_{s}=-\mu\left(\frac{\partial u}{\partial y}\right)_{y=h}

 

and u=U\left(1-\frac{y}{h}\right)\left[1-3 \frac{y}{h}\left(1-\frac{2}{n+1} \cdot \frac{h_{1}}{h}\right)\right], \text { so we get }

 

\frac{\partial u}{\partial y}=U\left[-\frac{1}{h}-3\left(\frac{1}{h}-\frac{2 y}{h^{2}}\right)\left(1-\frac{2}{n+1} \cdot \frac{h_{1}}{h}\right)\right]

 

\therefore \quad \tau_{s}=-\mu U\left[-\frac{1}{h}+\frac{3}{h}\left(1-\frac{2}{n} \cdot h_{1}\right)\right]

 

=\mu U\left[-\frac{2}{h}+\frac{6}{n+1} \cdot \frac{h_{1}}{h^{2}}\right]

 

Also, h=h_{1}-\left(h_{1}-h_{2}\right) \frac{x}{L}

 

\therefore \quad d h=-\frac{h_{1}-h_{2}}{L} d x

 

Thus, \int_{0}^{L} \tau_{s} d x=\frac{L}{h_{1}-h_{2}} \int_{h_{2}}^{h_{1}} \tau_{s} d h

 

=\frac{\mu L U}{h_{1}-h_{2}} \int_{h_{2}}^{h_{1}}\left(-\frac{2}{h}+\frac{6}{n+1} \cdot \frac{h_{1}}{h^{2}}\right) d h

 

=\frac{\mu U L}{h_{1}-h_{2}}\left(-2 \ln h-\frac{6}{n+1} \cdot \frac{h_{1}}{h}\right)_{h_{2}}^{h_{1}}

 

=\frac{\mu U L}{h_{2}(n-1)}\left[-2 \ln n-\frac{6 h_{1}}{n+1}\left(\frac{1}{h_{1}}-\frac{1}{h_{2}}\right)\right]

 

=\frac{\mu U L}{h_{2}(n-1)}\left[-2 \ln n+\frac{6(n-1)}{n+1}\right]

 

Also, load P=\int_{0}^{L}\left(p-p_{0}\right) \frac{ d x \cos \alpha}{\cos \alpha} \quad \begin{array}{l}\text { (neglecting contribution of } \\\tau_{s} \text { to load; } \alpha \text { is small) }\end{array}

 

∴ F_{s}=\int_{0}^{L} \tau_{s} d x+\tan \alpha(P)

 

or F_{s}=\int_{0}^{L} \tau_{s} d x+\tan \alpha(P)F_{s}=\frac{\mu U L}{h_{2}(n-1)}\left(-2 \ln n+\frac{6(n-1)}{n+1}\right)+\left[\frac{h_{1}-h_{2}}{L}\right] \times

 

\frac{6 \mu U L^{2}}{h_{2}^{2}(n-1)^{2}}\left(\ln n-\frac{2(n-1)}{n+1}\right)

 

=\frac{\mu U L}{h_{2}(n-1)}\left(4 \ln n-\frac{6(n-1)}{n+1}\right)

 

Now the force on the guide is

 

F_{G}=\int_{0}^{L} \tau_{G} d x

 

But \tau_{G}=-\mu\left(\frac{\partial u}{\partial y}\right)_{y=0}

 

=\mu U\left[\frac{1}{h}+\frac{3}{h}\left(1-\frac{2}{n+1} \cdot \frac{h_{1}}{h}\right)\right]

 

The expression is \tau_{G}=\mu U\left[\frac{4}{h}-\frac{6}{n+1} \cdot \frac{h_{1}}{h^{2}}\right]

 

∴ F_{G}=\int_{0}^{L} \tau_{G} d x

 

=\frac{L}{h_{1}-h_{2}} \int_{h_{2}}^{h_{1}} \tau_{G} d h (as before)

 

=\frac{\mu U L}{h_{2}(n-1)} \int_{h_{2}}^{h_{1}}\left(\frac{4}{h}-\frac{6}{n+1} \cdot \frac{h_{1}}{h^{2}}\right) d h

 

=\frac{\mu U L}{h_{2}(n-1)}\left[4 \ln n+\frac{6 h_{1}}{n+1}\left(\frac{1}{h_{1}}-\frac{1}{h_{2}}\right)\right]

 

=\frac{\mu U L}{h_{2}(n-1)}\left[4 \ln n-\frac{6(n-1)}{n+1}\right]

 

which is the same as F_{s}.

Related Answered Questions