Question 12.11: A small, solid metallic sphere has an opaque, diffuse coatin...
A small, solid metallic sphere has an opaque, diffuse coating for which α_{λ} = 0.8 for λ ≤ 5 μm and α_{λ} = 0.1 for λ > 5 μm. The sphere, which is initially at a uniform temperature of 300 K, is inserted into a large furnace whose walls are at 1200 K. Determine the total, hemispherical absorptivity and emissivity of the coating for the initial condition and for the final, steady-state condition.
Learn more on how we answer questions.
Known: Small metallic sphere with spectrally selective absorptivity, initially at T_{s} = 300 K, is inserted into a large furnace at T_{f} = 1200 K.
Find:
1. Total, hemispherical absorptivity and emissivity of sphere coating for the initial condition.
2. Values of α and ε after sphere has been in furnace a long time.
Schematic:
Assumptions:
1. Coating is opaque and diffuse.
2. Since furnace surface is much larger than that of sphere, irradiation approximates emission from a blackbody at T_{f}.
Analysis:
1. From Equation 12.52 the total, hemispherical absorptivity is
α = \frac{\int_{0}^{∞}{α_{λ}(λ)G_{λ}(λ)} dλ}{\int_{0}^{∞}{G_{λ}(λ)} dλ} (12.52)
or, with G_{λ} = E_{λ,b}(T_{f}) = E_{λ,b}(λ, 1200 K),
α = \frac{\int_{0}^{∞}{α_{λ}(λ)E_{λ,b}(λ, 1200 K)} dλ}{E_{b}(1200 K)}
Hence
α = α_{λ,1}\frac{\int_{0}^{λ_{1}}{E_{λ,b}(λ, 1200 K)} dλ}{E_{b}(1200 K)} + α_{λ,2}\frac{\int_{λ_{1}}^{∞}{E_{λ,b}(λ, 1200 K)} dλ}{E_{b}(1200 K)}
or
α = α_{λ,1}F_{(0→λ_{1})} + α_{λ,2}[1 – F_{(0→λ_{1})}]
From Table 12.2,
TABLE 12.2 Blackbody Radiation Functions | |||
\pmb{\frac{I_{λ, b}(λ, T)}{I_{λ,b}(λ_{\max}, T)}} | \pmb{I_{λ, b}(λ, T)/σT^{5} (μm · K · sr)^{-1}} | \pmb{F_{(0 → λ)}} | λT (μm · K) |
0.000000 | 0.375034 × 10^{-27} | 0.000000 | 200 |
0.000000 | 0.490335 × 10^{-13} | 0.000000 | 400 |
0.000014 | 0.104046 × 10^{-8} | 0.000000 | 600 |
0.001372 | 0.991126 × 10^{-7} | 0.000016 | 800 |
0.016406 | 0.118505 × 10^{-5} | 0.000321 | 1,000 |
0.072534 | 0.523927 × 10^{-5} | 0.002134 | 1,200 |
0.186082 | 0.134411 × 10^{-4} | 0.007790 | 1,400 |
0.344904 | 0.249130 | 0.019718 | 1,600 |
0.519949 | 0.375568 | 0.039341 | 1,800 |
0.683123 | 0.493432 | 0.066728 | 2,000 |
0.816329 | 0.589649 × 10^{-4} | 0.100888 | 2,200 |
0.912155 | 0.658866 | 0.140256 | 2,400 |
0.970891 | 0.701292 | 0.183120 | 2,600 |
0.997123 | 0.720239 | 0.227897 | 2,800 |
1.000000 | 0.722318 × 10^{-4} | 0.250108 | 2,898 |
0.997143 | 0.720254 × 10^{-4} | 0.273232 | 3,000 |
0.977373 | 0.705974 | 0.318102 | 3,200 |
0.943551 | 0.681544 | 0.361735 | 3,400 |
0.900429 | 0.650396 | 0.403607 | 3,600 |
0.851737 | 0.615225 × 10^{-4} | 0.443382 | 3,800 |
0.800291 | 0.578064 | 0.480877 | 4,000 |
0.748139 | 0.540394 | 0.516014 | 4,200 |
0.696720 | 0.503253 | 0.548796 | 4,400 |
0.647004 | 0.467343 | 0.579280 | 4,600 |
0.599610 | 0.433109 | 0.607559 | 4,800 |
0.554898 | 0.400813 | 0.633747 | 5,000 |
0.513043 | 0.370580 × 10^{-4} | 0.658970 | 5,200 |
0.474092 | 0.342445 | 0.680360 | 5,400 |
0.438002 | 0.316376 | 0.701046 | 5,600 |
0.404671 | 0.292301 | 0.720158 | 5,800 |
0.373965 | 0.270121 | 0.737818 | 6,000 |
0.345724 | 0.249723 × 10^{-4} | 0.754140 | 6,200 |
0.319783 | 0.230985 | 0.769234 | 6,400 |
0.295973 | 0.213786 | 0.783199 | 6,600 |
0.274128 | 0.198008 | 0.796129 | 6,800 |
0.254090 | 0.183534 | 0.808109 | 7,000 |
0.235708 | 0.170256 × 10^{-4} | 0.819217 | 7,200 |
0.218842 | 0.158073 | 0.829527 | 7,400 |
0.203360 | 0.146891 | 0.839102 | 7,600 |
0.189143 | 0.136621 | 0.848005 | 7,800 |
0.176079 | 0.127185 | 0.856288 | 8,000 |
0.147819 | 0.106772 × 10^{-4} | 0.874608 | 8,500 |
0.124801 | 0.901463 × 10^{-5} | 0.890029 | 9,000 |
0.105956 | 0.765338 | 0.903085 | 9,500 |
0.090442 | 0.653279 × 10^{-5} | 0.914199 | 10,000 |
0.077600 | 0.560522 | 0.923710 | 10,500 |
0.066913 | 0.483321 | 0.931890 | 11,000 |
0.057970 | 0.418725 | 0.939959 | 11,500 |
0.050448 | 0.364394 × 10^{-5} | 0.945098 | 12,000 |
0.038689 | 0.279457 | 0.955139 | 13,000 |
0.030131 | 0.217641 | 0.962898 | 14,000 |
0.023794 | 0.171866 × 10^{-5} | 0.969981 | 15,000 |
0.019026 | 0.137429 | 0.973814 | 16,000 |
0.012574 | 0.908240 × 10^{-6} | 0.980860 | 18,000 |
0.008629 | 0.623310 | 0.985602 | 20,000 |
0.003828 | 0.276474 | 0.992215 | 25,000 |
0.001945 | 0.140469 × 10^{-6} | 0.995340 | 30,000 |
0.000656 | 0.473891 × 10^{-7} | 0.997967 | 40,000 |
0.000279 | 0.201605 | 0.998953 | 50,000 |
0.000058 | 0.418597 × 10^{-8} | 0.999713 | 75,000 |
0.000019 | 0.135752 | 0.999905 | 100,000 |
λ_{1}T_{f} = 5 μm × 1200 K = 6000 μm · K:\qquad F_{(0→λ_{1})} = 0.738
Hence
α = 0.8 × 0.738 + 0.1 (1 – 0.738) = 0.62
The total, hemispherical emissivity follows from Equation 12.43.
ε(T) = \frac{\int_{0}^{∞}{ε_{λ}(λ, T)E_{λ,b}(λ, T)} dλ}{E_{b}(T)} (12.43)
ε(T_{s}) = \frac{\int_{0}^{∞}{ε_{λ}E_{λ,b}(λ, T_{s})} dλ}{E_{b}(T_{s})}
Since the surface is diffuse, ε_{λ} = α_{λ} and it follows that
ε = α_{λ,1}\frac{\int_{0}^{λ_{1}}{E_{λ,b}(λ, 300 K)} dλ}{E_{b}(300 K)} + α_{λ,2}\frac{\int_{λ_{1}}^{∞}{E_{λ,b}(λ, 300 K)} dλ}{E_{b}(300 K)}
or,
ε = α_{λ,1} F_{(0→λ_{1})} + α_{λ,2}[1 – F_{(0→λ_{1})}]
From Table 12.2,
λ_{1}T_{s} = 5 μm × 300 K = 1500 μm · K:\qquad F_{(0→λ_{1})} = 0.014
Hence
ε = 0.8 × 0.014 + 0.1(1 – 0.014) = 0.11
2. Because the spectral characteristics of the coating and the furnace temperature remain fixed, there is no change in the value of α with increasing time. However, as T_{s} increases with time, the value of ε will change. After a sufficiently long time, T_{s} = T_{f}, and ε = α (ε = 0.62).
Comments:
1. The equilibrium condition that eventually exists (T_{s} = T_{f}) corresponds precisely to the condition for which Kirchhoff’s law was derived. Hence α must equal ε.
2. Approximating the sphere as a lumped capacitance and neglecting convection, an energy balance for a control volume about the sphere yields
\dot{E}_{in} – \dot{E}_{out} = \dot{E}_{st}
(αG)A_{s} – (εσT_{s}^{4})A_{s} = Mc_{p}\frac{dT_{s}}{dt}
The differential equation could be solved to determine T(t) for t > 0, and the variation in ε that occurs with increasing time would have to be included in the solution.
