Question 11.4: A pipe network with two loops is shown in Fig. 11.9. Determi...

A pipe network with two loops is shown in Fig. 11.9. Determine the flow in each pipe for an inflow of 5 units at the junction A and outflows of 2.0 units and 3.0 units at junctions D and C respectively. The resistance R for different pipes are shown in the figure.

4
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Flow direction is assumed positive clockwise for both the loops ABD and BCD. The iterative solutions based on Hardy-Cross method has been made.

The five trials have been made and the results of each trial is shown in Fig. 11.10; for each trial, dQ is calculated from Eq. (11.31). After fifth trial, the error dQ is so small that it changes the flow only in the third place of decimal. Hence the calculation has not been continued beyond the fifth trial.

 

dQ=ΣRQQΣ2RQd Q=\frac{\Sigma R|Q| Q}{\Sigma 2 R|Q|} (11.31)

 

First trial

 

Loop ABD Loop BCD
R|Q|Q 2R|Q| R|Q|Q 2R|Q|
120×22=480120 \times 2^{2}=480 2 × 120 × 2 = 480 300×(1.2)2=432300 \times(1.2)^{2}=432 2 × 300 × 1.2 = 720
400×(0.8)2=256400 \times(0.8)^{2}=256 2 × 400 × 0.8 = 640 150×(1.8)2=486-150 \times(1.8)^{2}=-486 2 × 150 × 1.8 = 540
200×32=1800-200 \times 3^{2}=-1800 2 × 400 × 0.8 = 640 400×(0.8)2=256-400 \times(0.8)^{2}=-256 2 × 400 × 0.8 = 640
ΣRQQ=1064\Sigma R|Q| Q=-1064 2ΣRQ=23202 \Sigma R|Q|=2320 ΣRQQ=310\Sigma R|Q| Q=-310 2ΣRQ=19002 \Sigma R|Q|=1900
dQ=RQQ2RQd Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} dQ=RQQ2RQd Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|}
=10642320=\frac{-1064}{2320} =3001900=\frac{-300}{1900}
=0.46=-0.46 =0.16=-0.16

 

Second trial:

 

Loop ABD Loop BCD
R|Q|Q 2R|Q| R|Q|Q 2R|Q|
120×(2.46)2=726.19120 \times(2.46)^{2}=726.19 2×120×2.46=590.402 \times 120 \times 2.46=590.40 300×(1.36)2=554.88300 \times(1.36)^{2}=554.88 2×300×1.36=8162 \times 300 \times 1.36=816
400×(1.10)2=484.00400 \times(1.10)^{2}=484.00 2×400×1.10=880.002 \times 400 \times 1.10=880.00 150×(1.64)2=403.44-150 \times(1.64)^{2}=-403.44 2×150×1.64=4922 \times 150 \times 1.64=492
1200×(2.54)2=1290.32-1200 \times(2.54)^{2}=-1290.32 2×200×2.54=1016.002 \times 200 \times 2.54=1016.00 400×(1.10)2=484.00-400 \times(1.10)^{2}=-484.00 2×400×1.10=8802 \times 400 \times 1.10=880
ΣRQQ=50.13\Sigma R|Q| Q=-50.13 2ΣRQ=2486.402 \Sigma R|Q|=2486.40 ΣRQQ=332.56\Sigma R|Q| Q=-332.56 2ΣRQ=21882 \Sigma R|Q|=2188
dQ=RQQ2RQd Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} dQ=RQQ2RQd Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|}
=50.132486.40=\frac{-50.13}{2486.40} =332.562188=\frac{-332.56}{2188}
=0.02=-0.02 =0.15=-0.15

 

Third trial:

 

Loop ABD Loop BCD
R|Q|Q 2R|Q| R|Q|Q 2R|Q|
120×(2.48)2=738.05120 \times(2.48)^{2}=738.05 2×120×2.48=595.202 \times 120 \times 2.48=595.20 300×(1.51)2=684.03300 \times(1.51)^{2}=684.03 2×300×1.51=906.002 \times 300 \times 1.51=906.00
400×(0.97)2=376.36400 \times(0.97)^{2}=376.36 2×400×0.97=776.002 \times 400 \times 0.97=776.00 150×(1.49)2=333.01-150 \times(1.49)^{2}=-333.01 2×150×1.49=447.002 \times 150 \times 1.49=447.00
200×(2.52)2=1270.08-200 \times(2.52)^{2}=-1270.08 2×200×2.52=1008.002 \times 200 \times 2.52=1008.00 400×(0.97)2=376.36-400 \times(0.97)^{2}=-376.36 2×400×0.97=776.002 \times 400 \times 0.97=776.00
ΣRQQ=155.67\Sigma R|Q| Q=-155.67 2ΣRQ=2379.202 \Sigma R|Q|=2379.20 ΣRQQ=25.34\Sigma R|Q| Q=-25.34 2RQ=21292 \sum R|Q|=2129
dQ=RQQ2RQd Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} dQ=RQQ2RQd Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|}
=155.672379.67=\frac{-155.67}{2379.67} =25.342129=\frac{-25.34}{2129}
=0.06=-0.06 =0.01=-0.01

 

Fourth trial:

 

Loop ABD Loop BCD
R|Q|Q 2R|Q| R|Q|Q 2R|Q|
120×(2.54)2=774.20120 \times(2.54)^{2}=774.20 2×120×2.54=609.602 \times 120 \times 2.54=609.60 300×(1.52)2=693.12300 \times(1.52)^{2}=693.12 2×300×1.52=912.002 \times 300 \times 1.52=912.00
400×(1.02)2=416.16400 \times(1.02)^{2}=416.16 2×400×1.02=816.002 \times 400 \times 1.02=816.00 150×(1.48)2=328.56-150 \times(1.48)^{2}=-328.56 2×150×1.48=444.002 \times 150 \times 1.48=444.00
200×(2.46)2=1210.32-200 \times(2.46)^{2}=-1210.32 2×200×2.46=984.002 \times 200 \times 2.46=984.00 400×(1.02)2=416.16-400 \times(1.02)^{2}=-416.16 2×400×1.02=816.002 \times 400 \times 1.02=816.00
ΣRQQ=19.96\Sigma R|Q| Q=-19.96 2ΣRQ=2409.602 \Sigma R|Q|=2409.60 ΣRQQ=51.6\Sigma R|Q| Q=-51.6 2ΣRQ=21722 \Sigma R|Q|=2172
dQ=RQQ2RQd Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} dQ=RQQ2RQd Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|}
=19.962409.60=\frac{-19.96}{2409.60} =51.62172=\frac{-51.6}{2172}
=0.008=-0.008 =0.02=-0.02

 

Fifth trial:

 

Loop ABD Loop BCD
R|Q|Q 2R|Q| R|Q|Q 2R|Q|
120×(2.58)2=779.08120 \times(2.58)^{2}=779.08 2×120×2.58=619.202 \times 120 \times 2.58=619.20 300×(1.54)2=711.48300 \times(1.54)^{2}=711.48 2×300×1.54=924.002 \times 300 \times 1.54=924.00
400×(1.008)2=406.42400 \times(1.008)^{2}=406.42 2×400×1.008=806.402 \times 400 \times 1.008=806.40 150×(1.46)2=319.74-150 \times(1.46)^{2}=-319.74 2×150×1.46=438.002 \times 150 \times 1.46=438.00
200×(2.452)2=1202.46-200 \times(2.452)^{2}=-1202.46 2×200×2.452=980.802 \times 200 \times 2.452=980.80 400×(1.08)2=406.42-400 \times(1.08)^{2}=-406.42 2×400×1.008=806.402 \times 400 \times 1.008=806.40
ΣRQQ=16.96\Sigma R|Q| Q=-16.96 2ΣRQ=2406.402 \Sigma R|Q|=2406.40 ΣRQQ=14.68\Sigma R|Q| Q=-14.68 2ΣRQ=2168.402 \Sigma R|Q|=2168.40
dQ=RQQ2RQd Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|} dQ=RQQ2RQd Q=\frac{\sum R|Q| Q}{\sum 2 R|Q|}
=16.962406.40=\frac{-16.96}{2406.40} =14.682168.40=\frac{-14.68}{2168.40}
=0.007=-0.007 =0.007=-0.007
4.

Related Answered Questions