Question 3.18: Find the values of the charges that will cause the potential...

Find the values of the charges that will cause the potentials as shown in the Figure 3-18, if the coordinates of the points in the plane z = 0 are: Q1 (2,3) , Q2 (2,2) ,  Q3 (5,3) and Q4 (5,2) . Assume that the diameter of the charges is 2a = 1 meter.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The matrix [P] in (3.83) and (3.84) has the elements

[ P ]=\frac{1}{4 \pi \varepsilon_{0}}\left[\begin{array}{cccc} \frac{1}{\left| r _{1}- r _{1}\right|} & \frac{1}{\left| r _{1}- r _{2}\right|} & \frac{1}{\left| r _{1}- r _{3}\right|} & \frac{1}{\left| r _{1}- r _{4}\right|} \\ \frac{1}{\left| r _{2}- r _{1}\right|} & \frac{1}{\left| r _{2}- r _{2}\right|} & \frac{1}{\left| r _{2}- r _{3}\right|} & \frac{1}{\left| r _{2}- r _{4}\right|} \\ \frac{1}{\left| r _{3}- r _{1}\right|} & \frac{1}{\left| r _{3}- r _{2}\right|} & \frac{1}{\left| r _{3}- r _{3}\right|} & \frac{1}{\left| r _{3}- r _{4}\right|} \\ \frac{1}{\left| r _{4}- r _{1}\right|} & \frac{1}{\left| r _{4}- r _{2}\right|} & \frac{1}{\left| r _{4}- r _{3}\right|} & \frac{1}{\left| r _{4}- r _{4}\right|} \end{array}\right]            (3.83)

 

P_{i, i}=\frac{1}{4 \pi \varepsilon_{0} a}         (3.84)

 

[P]=\frac{1}{4 \pi \varepsilon_{0}}\left[\begin{array}{lllll} \frac{1}{(1 / 2)} & \frac{1}{1} & \frac{1}{3} & \frac{1}{\sqrt{1^{2}+3^{2}}} \\ \frac{1}{1} & \frac{1}{(1 / 2} & \frac{1}{\sqrt{1^{2}+3^{2}}} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{\sqrt{1^{2}+3^{2}}} & \frac{1}{(1 / 2)} & \frac{1}{1} \\ \frac{1}{\sqrt{1^{2}+3^{2}}} & \frac{1}{3} & \frac{1}{1} & \frac{1}{(1 / 2)} \end{array}\right]=\frac{1}{4 \pi \varepsilon_{0}}\left[\begin{array}{ccccc} 2 & 1 & 0.3333 & 0.3162 \\ 1 & 2 & 0.3162 & 0.3333 \\ 0.3333 & 0.3162 & 2 & 1 \\ 0.3162 & 0.3333 & 1 & 2 \end{array}\right] .

The column vector for the potential is [ V ]=[-1,-1,1,1]^{ T}where the “T” indicates the transpose. Solving the matrix equation (3.82) leads to

 [P][Q] = [V]        (3.82)

Q _{1}= Q _{2}=- Q _{3}=- Q _{4}=-.4254(4 \pi \varepsilon_{0})

Related Answered Questions

Question: 3.15

Verified Answer:

There are N_{N}=5 nodes denoted as ...