Question 21.P.7: A rectangular portal frame ABCD is rigidly fixed to foundati...

A rectangular portal frame ABCD is rigidly fixed to foundations A and D and is subjected to a compression load P as shown in Fig. P.21.7. If all the members have the same bending stiffness EI show that the buckling loads for modes which are symmetrical about the vertical centre line are given by the transcendental equation

\frac{\mu a}{2}=-\frac{1}{2}\left(\frac{a}{b}\right) \tan \left(\frac{\mu a}{2}\right)

where μ² = P/EI.

p21.7
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The deflected shape of each of the members AB and BC is shown in Fig. S.21.7.

For the member AB and from Eq. (13.3) \frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}=\frac{M}{E I}

E I \frac{\mathrm{d}^{2} v_{1}}{\mathrm{~d} x_{1}^{2}}=-M_{B}

Then

E I \frac{\mathrm{d} v_{1}}{\mathrm{~d} x_{1}}=-M_{\mathrm{B}} x_{1}+C_{1}

When x_{1} = b, dv_{1}/dx_{1} = 0 so that C_{1} = M_{B}b and

E I \frac{\mathrm{d} v_{1}}{\mathrm{~d} x_{1}}=-M_{\mathrm{B}}\left(x_{1}-b\right)   (i)

At B when x_{1} = 0 Eq. (i) gives

\frac{\mathrm{d} v_{1}}{\mathrm{~d} x_{1}}=\frac{M_{\mathrm{B}} b}{E I}   (ii)

In the member BC Eq. (13.3) gives

E I \frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}=-P v+M_{\mathrm{B}}

or

\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}+\mu^{2} v=\frac{M_{\mathrm{B}}}{E I}  (iii)

where μ²=P/EI. The solution of Eq. (iii) is

v=C_{2} \cos \mu x+C_{3} \sin \mu x+\frac{M_{\mathrm{B}}}{P}    (iv)

When x = 0, v = 0 so that C_{2} = -M_{B}/P. Also, when x = a/2, dv/dx = 0 which gives

C_{3}=C_{2} \tan \frac{\mu a}{2}=-\frac{M_{\mathrm{B}}}{P} \tan \frac{\mu a}{2}

Eq. (iv) then becomes

v=-\frac{M_{\mathrm{B}}}{P}\left(\cos \mu x+\tan \frac{\mu a}{2} \sin \mu x-1\right)

Then

\frac{\mathrm{d} v}{\mathrm{~d} x}=-\frac{M_{\mathrm{B}}}{P}\left(-\mu \sin \mu x+\mu \tan \frac{\mu a}{2} \cos \mu x\right)

At B when x = 0,

\frac{\mathrm{d} v}{\mathrm{~d} x}=-\frac{M_{\mathrm{B}}}{P} \mu \tan \frac{\mu a}{2}  (v)

Since d_{v1}/d_{x1} = dv/dx at B then, from Eqs (ii) and (v)

\frac{b}{E I}=-\frac{\mu}{P} \tan \frac{\mu \mathrm{a}}{2}

Rearranging

\frac{\mu a}{2}=\frac{-1}{2}\left(\frac{a}{b}\right) \tan \frac{\mu a}{2}

s21.7

Related Answered Questions