Question 9.12: Draw S.F.D and B.M.D for cantilever beam subjected to U.D.L ...
Draw S.F.D and B.M.D for cantilever beam subjected to U.D.L of intensity 3 kN/m and point load 10 kN as shown in Fig. 9.20. Also determine the supporting reaction and moment offered by wall on beam.

Learn more on how we answer questions.
To maintain the beam in equilibrium, wall will offer an upward force R_{A} and moment in anticlockwise direction as shown in Fig. 9.20 at point A.
Shear Force Diagram:
(S . F .)_{x_{1} x_{1}^{1}}=+3 \cdot x_{1}
(S F)_{D}=0,(S F)_{C}=3 \times 4=+12 kN
(S F)_{x_{2} x_{2}^{1}}=+3 \times 4=+12 kN
(S F)_{C}=(S F)_{B}=+12 kN
(S F)_{x_{3} x_{3}^{1}}=+12+10=22 kN
(S F)_{B}=(S F)_{A}=+22 kN
Bending Moment Diagram:
(B M)_{x_{1} x_{1}^{1}}=-3 x_{1} \times x_{1} / 2
(B M)_{D}=0,(B M)_{C}=-3 \times 4 \times \frac{4}{2}=-24 kNm
(B M)_{x_{2} x_{2}^{1}}=-(3 \times 4) \times\left(x_{2}-2\right)
(B M)_{D}= −12 (4−2)
= −24 kNm
(B M)_{B}= −12(5−2)= −36 kNm
(B M)_{x_{3} x_{3}^{1}}=-(3 \times 4)\left(x_{3}-2\right)-10\left(x_{3}-5\right)
(B M)_{B}=-3 \times 4(5-2)-0=-36 kNm
(B M)_{A}=−3 \times 4 (6−2)–10 (6−5)=−58 kNm
For support reaction and moment,
\Sigma Y =0, R_{A}=10+(3 \times 4)=22 kN
\Sigma M _{ A }=0,- M _{ A }+10 \times 1+(3 \times 4) \times 4=0
M _{ A } = 58 kNm
Note: Here full load of U.D.L (3 × 4) is acting at mid i.e. at 2 m from D thus from X_{2} X_{2}^{1} thedistance of load will be (x_{2}− 2).