Question 9.16: Draw S.F.D. and B.M.D. of overhanging beam as shown in the F...
Draw S.F.D. and B.M.D. of overhanging beam as shown in the Fig. 9.24.

Learn more on how we answer questions.
\Sigma Y =0, R_{B} + R_{C}= 6 + (15 \times 2)
=36
\sum M_{B}=0,
R_{C} \times 4+6 \times 2+10=30 \times 5
R_{C}= 32 kN
R_{B} = 4 kN
Shear Force Diagram:
(S F)_{X_{1} X_{1}^{1}}=+15 \times x_{1}
(S F)_{D}=0
(S F)_{C}=15 \times 2 = 30 kN
(S F) x_{2} x_{2}^{1}=(15 \times 2)-R_{C}
= 30 – 32 = −2 kN
(S F)_{X_{2} X_{2}^{1}}=-2 kN \quad(S F)_{C}=(S F)_{E}=-2 kN
(S F)_{X_{3} X_{3}^{1}}=(15 \times 2)-R_{C}
(S F)_{E}=(S F)_{B}=-2 kN
(S F)_{X_{4} X_{4}^{1}}=(15 \times 2)-R_{C}-R_{B}
= 30 – 32 – 4
= −6 kN
( SF )_{ B }=( SF )_{ A }=-6 kN
Bending Moment Diagram:
(B M)_{X_{1} X_{1}^{1}}=-15 x_{1} \times \frac{x_{1}}{2}
(B M)_{D}=0
(B M)_{C}=-15 \times 2 \times \frac{\not 2}{\not 2}
= −30 kNm
(B M)_{X_{2} X_{2}^{1}}=-(15 \times 2)\left(x_{2}-1\right)+R_{C}\left(x_{2}-2\right)
=-30\left( x _{2}-1\right)+32\left( x _{2}-2\right)
(B M)_{C}=-30(2-1)+0=-30 kNm
(B M)_{E}=-30(4-1)+32(4-2)
= −26 kNm
(B M)_{X_{3} X_{3}^{1}}=-30\left(x_{3}-1\right)+32\left(x_{3}-2\right)+10
(B M)_{E}=-30(4-1)+32(4-2)+10
= −16 kNm
(B M)_{B}=-30(6-1)+32(6-2)+10
(B M)_{B}=−12 kNm
(B M)_{X_{4} X_{4}^{1}}=-30\left(x_{4}-1\right)+32\left(x_{4}-2\right)+10+4\left(x_{4}-6\right)
(B M)_{B}=−12 kNm
(B M)_{A}=-30(8-1)+32(8-2)+10+4(8-6)
= 0