Question 9.17: Find the value of x and draw S.F.D. and B.M.D. for the beam ...
Find the value of x and draw S.F.D. and B.M.D. for the beam shown as shown in Fig. 9.25.
Take RA = 1000 N and RB = 4000 N.
(U.P.T.U. IInd Sem, 2000−01)

Learn more on how we answer questions.
\sum M_{A}=0,
R_{B} \times(2+x)=1000 \times(3+x)+(2000 \times 2)(x+1)
4000 (2 + x) = 3000 + 1000x + 4000x + 4000
8000 + 4000x = 7000 + 5000x
\quad1000 = 1000x
x = 1 m
Shear Force Diagram:
(S F)_{X_{1} X_{1}^{1}}=+1000 N
(S F)_{D}=(S F)_{B}=+1000 N
(S F)_{x_{2} x_{2}^{1}}=+1000-4000+2000\left(x_{2}-1\right)
(S F)_{B}=−3000 N
(S F)_{C}= 1000 – 4000 + 2000 (3 − 1)
\quad= 1000 N
(S D)_{x_{3} x_{3}^{1}}=+1000-4000+(2000 \times 2)
= +1000 N
(S F)_{C}=(S F)_{A}=+1000 N
Note in portion BC, (S.F.) changes its sign and let it is zero at point E which is at distance ‘a’ from point D. Using equation (S F)_{X_{2} X_{2}^{1}} ,
(S F)_{E}=1000 – 4000 + 2000 (a − 1)
0 = −3000 + 2000 (a − 1)
a = 2.5 m
Bending Moment Diagram:
(B M)_{x_{1} x_{1}^{1}}=-1000 \cdot x_{1}
(B M)_{D}=0,(B M)_{B}=-1000 Nm
(B M)_{x_{2} x_{2}^{1}}=-1000 \cdot x_{2}+4000\left(x_{2}-1\right)-2000\left(x_{2}-1\right) \frac{\left(x_{2}-1\right)}{2}
(B M)_{B}=-1000 Nm
(B M)_{C}=-1000 \times 3+4000(3-1)-2000 \frac{(3-1)^{2}}{2}
= +1000 Nm
(B M)_{E}=-1000 \times 2.5+4000(2.5-1)-2000 \frac{(2.5-1)}{2}
= +1250 Nm
(B M)_{X_{3} x_{3}^{1}}=-1000 \cdot x_{3}+4000\left(x_{3}-1\right)-(2000 \times 2)\left(x_{3}-2\right)
(B M)_{C}=−1000 × 3 + 4000 (3 – 1) – 4000 (3 − 2)
= 1000 Nm
(B M)_{A}=−1000 × 4000 (4 − 1) – 4000 (4 − 2)
= 0
To determine Point of Contraflexure,
Put (B M)_{X_{2} X_{2}^{1}}=0
-1000 \cdot x_{2}+4000\left(x_{2}-1\right)-2000 \frac{\left(x_{2}-1\right)^{2}}{2}=0
-x_{2}+4\left(x_{2}-1\right)-\frac{2\left(x_{2}-1\right)^{2}}{2}=0
-x_{2}+4 x_{2}-4-\left(x_{2}^{2}+1-2 x_{2}\right)=0
+3 x_{2}-4-x_{2}^{2}-1+2 x_{2}=0
-x_{2}^{2}+5 x_{2}-5=0
x_{2}^{2}-5 x_{2}-5=0
x_{2}=\frac{+5 \pm \sqrt{(+5)^{2}-4 \times 1 \times 5}}{2},
x_{2}=\frac{5 \pm \sqrt{5}}{2}
x_{2}=3.62 m and 1.38 m where first value does not lie for x_{2} as shown in BMD, thus
x_{2}= 1.38 m