Question 2.7.21: After elimination clears out column 1 below the first pivot,...

After elimination clears out column 1 below the first pivot, find the symmetric 2 by 2 matrix that appears in the lower right comer:
Start from A =\left[ \begin{matrix} 2 & 4 & 8 \\ 4 & 3 & 9 \\ 8 & 9 & 0 \end{matrix} \right] and A =\left[ \begin{matrix} 1 & b & c \\ b & d & e \\ c & e & f \end{matrix} \right].

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Elimination on a symmetric 3 by 3 matrix leaves a symmetric lower right 2 by 2 matrix. 

The examples \left[ \begin{matrix} 2 & 4 & 8 \\ 4 & 3 & 9 \\ 8 & 9 & 0 \end{matrix} \right] and \left[ \begin{matrix} 1 & b & c \\ b & d & e \\ c & e & f \end{matrix} \right] lead to \begin{bmatrix} -5 & -7 \\ -7 & -32 \end{bmatrix} and \begin{bmatrix} d-{ b }^{ 2 } & e-bc \\ e-bc & f-{ c }^{ 2 } \end{bmatrix}.

Related Answered Questions