Question 7.4: IONIC AND ELECTRONIC POLARIZABILITY Consider the CsCl crysta...

IONIC AND ELECTRONIC POLARIZABILITY    Consider the CsCl crystal which has one Cs^{+} –Cl^{−} pair per unit cell and a lattice parameter a of 0.412 nm. The electronic polarizability of Cs^{+}  \text {and}  Cl^{−} ions is 2.7 \times  10^{−40}  F  m^{2}  \text {and}  4.0 \times  10^{−40}  F  m^{2}, respectively, and the mean ionic polarizability per ion pair is 5.8 \times  10^{−40}  F  m^{2}. What is the dielectric constant at low frequencies and that at optical frequencies?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The CsCl structure has one cation (Cs^{+}) and one anion (Cl^{−}) in the unit cell. Given the lattice parameter a=0.412 \times 10^{-9}  m , the number of ion pairs N_{i} per unit volume is 1 / a^{3}=1 /  \left(0.412 \times 10^{-9}  m \right)^{3}=1.43 \times 10^{28}  m ^{-3}. N_{i} is also the concentration of cations and anions individually. From the Clausius–Mossotti equation,

\frac{\varepsilon_{r}-1}{\varepsilon_{r}+2}=\frac{1}{3 \varepsilon_{o}}\left[N_{i} \alpha_{e}\left( Cs ^{+}\right)+N_{i} \alpha_{e}\left( CI ^{-}\right)+N_{i} \alpha_{i}\right]

That is,

\frac{\varepsilon_{r}-1}{\varepsilon_{r}+2}=\frac{\left(1.43 \times 10^{28}  m ^{-3}\right)\left(2.7 \times 10^{-40}+4.0 \times 10^{-40}+5.8 \times 10^{-40}  F  m ^{2}\right)}{3\left(8.85 \times 10^{-12}  F  m ^{-1}\right)}

Solving for \epsilon _{r}, we find \epsilon _{r} = 7.18.

At high frequencies—that is, near-optical frequencies—the ionic polarization is too sluggish to allow ionic polarization to contribute to \varepsilon _{r}. Thus, \varepsilon _{rop},  relative permittivity at optical frequencies, is given by

\frac{\varepsilon_{\text {rop }}-1}{\varepsilon_{\text {rop }}+2}=\frac{1}{3 \varepsilon_{o}}\left[N_{i} \alpha_{e}\left( Cs ^{+}\right)+N_{i} \alpha_{e}\left( Cl ^{-1}\right)\right]

That is,

\frac{\varepsilon_{\text {rop }}-1}{\varepsilon_{\text {rop }}+2}=\frac{\left(1.43 \times 10^{28}  m ^{-3}\right)\left(2.7 \times 10^{-40}+4.0 \times 10^{-40}  F  m ^{2}\right)}{3\left(8.85 \times 10^{-12}  F  m ^{-1}\right)}

Solving for \varepsilon _{rop}, we find \varepsilon _{rop} = 2.69. This very close to the experimental value \varepsilon _{rop} = 2.62. The low frequency experimental value for \varepsilon _{r} is 7.20, but this is normally used to deduce \alpha _{i}.

Related Answered Questions