Question 7.7: Fractions of Species of a Polyprotic Acid Calculate the frac...
Fractions of Species of a Polyprotic Acid
Calculate the fractions of H_{2}CO _{3} , HCO _{3}^{-} , and CO _{3}^{2-} at pH 9.00.
Learn more on how we answer questions.
The fraction of each species present is the concentration of that species divided by the total concentrations of all three species. For example, for HCO _{3}^{-} we have
Fraction HCO _{3}^{-}= \frac{[HCO _{3}^{-}]}{[H_{2}CO _{3}] + [HCO _{3}^{-}] + [CO _{3}^{2-}]} = f_{HCO _{3}^{-}}
Dividing the numerator and denominator by [HCO _{3}^{-}] gives
f_{HCO _{3}^{-}} = \frac{1}{ \frac{[H_{2}CO _{3}] }{[HCO _{3}^{-}]} +1+\frac{[CO _{3}^{2-}]}{[HCO _{3}^{-}]}}
We can calculate the [H_{2}CO _{3}] / [HCO _{3}^{-}] ratio from K_{a_1} :
K_{a_1} = \frac{[H^{+}] [HCO _{3}^{-}]}{[H_{2}CO _{3}]}
or \frac{[H_{2}CO _{3}]}{[HCO _{3}^{-}]} = \frac{[H^{+}]}{K_{a_1} }
Since K_{a_1} = 4.3 ×10 ^{-7} and pH = 9.00 ( [H^{+}] = 1.00 ×10 ^{-9} ),
\frac{[H_{2}CO _{3}]}{[HCO _{3}^{-}]} = \frac{1.00 ×10 ^{-9}}{4.3 ×10 ^{-7}} = 2.3 ×10 ^{-3}
We can use K_{a_2} to calculate the [CO _{3}^{2-}] / [HCO _{3}^{-}] ratio:
K_{a_2} = \frac{[H^{+}] [CO _{3}^{2-}] }{[HCO _{3}^{-}]} =4.8 ×10 ^{-11}
so
\frac{ [CO _{3}^{2-}]}{[HCO _{3}^{-}]} = \frac{K_{a_2}}{[H^{+}]}= \frac{4.8 ×10 ^{-11}}{1.00 ×10 ^{-9}}= 4.8 ×10 ^{-2}
Now we can calculate the fraction of [HCO _{3}^{-}] present:
f_{HCO _{3}^{-}} = \frac{1}{ \frac{[H_{2}CO _{3}] }{[HCO _{3}^{-}]} +1+\frac{[CO _{3}^{2-}]}{[HCO _{3}^{-}]}}= \frac{1}{2.3 ×10 ^{-3} + 1+ 4.8 ×10 ^{-2} }
= \frac{1}{1.05}= 0.95
Note that at pH 9, HCO _{3}^{-} represents 95% of the carbonate-containing species in the solution.