Question : Show that v1,v2,v3 are independent but v1,v2,v3,v4 are depe...

Show that {v}_{1}, {v}_{2}, {v}_{3} are independent but {v}_{1}, {v}_{2}, {v}_{3}, {v}_{4} are dependent:
{v}_{1}=\left[ \begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right] \quad {v}_{2}=\left[ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix} \right] \quad {v}_{3}=\left[ \begin{matrix} 1 \\ 1 \\ 1 \end{matrix} \right] \quad {v}_{4}=\left[ \begin{matrix} 2 \\ 3 \\ 4 \end{matrix} \right].
Solve {c}_{1}{v}_{1} + {c}_{2}{v}_{2} + {c}_{3}{v}_{3} + {c}_{4}{v}_{4} = 0 or Ax = 0. The v’s go in the columns of A.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\left[ \begin{matrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{matrix} \right] \left[ \begin{matrix} { c }_{ 1 } \\ { c }_{ 2 } \\ { c }_{ 3 } \end{matrix} \right]=0 gives { c }_{ 3 } = { c }_{ 2 } = { c }_{ 1 } = 0.

So those 3 column vectors are independent.

But \left[ \begin{matrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 4 \end{matrix} \right] [c]=\left[ \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right] is solved by c = (1, 1, -4, 1).

Then {v}_{1} + {v}_{2} – 4{v}_{3} + {v}_{4} = 0 (dependent).