Show that {v}_{1}, {v}_{2}, {v}_{3} are independent but {v}_{1}, {v}_{2}, {v}_{3}, {v}_{4} are dependent:
{v}_{1}=\left[ \begin{matrix} 1 \\ 0 \\ 0 \end{matrix} \right] \quad {v}_{2}=\left[ \begin{matrix} 1 \\ 1 \\ 0 \end{matrix} \right] \quad {v}_{3}=\left[ \begin{matrix} 1 \\ 1 \\ 1 \end{matrix} \right] \quad {v}_{4}=\left[ \begin{matrix} 2 \\ 3 \\ 4 \end{matrix} \right].
Solve {c}_{1}{v}_{1} + {c}_{2}{v}_{2} + {c}_{3}{v}_{3} + {c}_{4}{v}_{4} = 0 or Ax = 0. The v’s go in the columns of A.