Question 9.4: CAUCHY EQUATION AND DIAMOND Using the Cauchy coefficients fo...
CAUCHY EQUATION AND DIAMOND Using the Cauchy coefficients for diamond in Table 9.2, calculate the refractive index at 550 nm.
Learn more on how we answer questions.
At λ = 550 nm, the photon energy is
h f=\frac{h c}{\lambda}=\frac{\left(6.62 \times 10^{-34} J s \right)\left(3 \times 10^{8} m s ^{-1}\right)}{550 \times 10^{-9} m } \times \frac{1}{1.6 \times 10^{-19} J eV ^{-1}}=2.254 eV
Using the Cauchy dispersion relation for diamond with coefficients from Table 9.2,
\begin{aligned} n &=n_{-2}(h f)^{-2}+n_{0}+n_{2}(h f)^{2}+n_{4}(h f)^{4} \\ &=\left(-1.07 \times 10^{-5}\right)(2.254)^{-2}+2.378+\left(8.01 \times 10^{-3}\right)(2.254)^{2}+\left(1.04 \times 10^{-4}\right)(2.254)^{4} \\ &=2.421 \end{aligned}
The difference in n from the value in Example 9.3 is 0.08 percent, and is due to the Cauchy coefficients quoted in Table 9.2 being applicable over a wider wavelength range at the expense of some accuracy.
Table 9.2 Sellmeier and Cauchy coefficients | ||||||
Sellmeier | ||||||
A_{1} | A_{2} | A_{3} | \lambda _{1} (\mu m) | \lambda _{2} (\mu m) | \lambda _{3} (\mu m) | |
SiO_{2} (fused silica) | 0.6967490 | 0.4082180 | 0.8908150 | 0.0690660 | 0.1156620 | 9.9005590 |
86.5% SiO_{2}–13.5% GeO_{2} |
0.711040 | 0.451885 | 0.704048 | 0.0642700 | 0.129408 | 9.425478 |
GeO_{2} | 0.80686642 | 0.71815848 | 0.85416831 | 0.068972606 | 0.15396605 | 11.841931 |
Sapphire | 1.023798 | 1.058264 | 5.280792 | 0.0614482 | 0.110700 | 17.92656 |
Diamond | 0.3306 | 4.3356 | 0.1750 | 0.1060 | ||
Cauch | ||||||
Range of hf (eV) | n_{−2} (eV^{2} ) | n_{0} | n_{2} (eV^{−2}) | n_{4} (eV^{−4}) | ||
Diamond | 0.05–5.47 | −1.07 × 10^{−5} | 2.378 | 8.01 × 10^{−3} | 1.04 × 10^{−4} | |
Silicon | 0.002–1.08 | −2.04 × 10^{−8} | 3.4189 | 8.15 × 10^{−2} | 1.25 × 10^{−2} | |
Germanium | 0.002–0.75 | −1.0 × 10^{−8} | 4.003 | 2.2 × 10^{−1} | 1.4 × 10^{−1} |