Question 9.14: FREE CARRIER ABSORPTION COEFFICIENT AND CONDUCTIVITY From Ch...

FREE CARRIER ABSORPTION COEFFICIENT AND CONDUCTIVITY    From Chapter 2 we know that the electrical conductivity at an angular frequency ω is given by

\sigma_{ ac }=\frac{\sigma_{o}}{1+j \omega \tau}

where \sigma _{o} is the dc conductivity and \tau is the mean free scattering time for the free carriers (electrons in an n-type semiconductor). Consider a semiconductor sample with a finite conductivity and relate the absorption coefficient α to the dc conductivity \sigma _{o} and show that the α is proportional to 1 ∕ ω². An n-type Ge has a resistivity of 1 \times 10^{−3} Ω m and the mean free scattering time \tau of electrons (determined from the drift mobility) is 0.25 ps. Calculate the imaginary part \varepsilon_{r}^{\prime \prime} of the relative permittivity at a wavelength of 10 μm where the refractive index is 4.0. Find the absorption coefficient α due to free carrier absorption.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Consider the conduction losses suffered by a propagating EM wave which experiences an imaginary permittivity given by Equation 9.54. We need the real part of \sigma _{ac}. We can write the ac conductivity as

\varepsilon_{r}^{\prime \prime}=\frac{\operatorname{Re}\left(\sigma_{ ac }\right)}{\varepsilon_{o} \omega}           [9.54]

\sigma_{ ac }=\frac{\sigma_{o}}{1+(\omega \tau)^{2}}-j \frac{\sigma_{o} \tau \omega}{1+(\omega \tau)^{2}}

and then use the real part in Equation 9.54 to find

\varepsilon_{r}^{\prime \prime}=\frac{\sigma_{o}}{\varepsilon_{o} \omega\left[1+(\omega \tau)^{2}\right]}

For ω > 1 ∕ τ the above equation becomes,

\varepsilon_{r}^{\prime \prime}=\frac{\sigma_{o}}{\varepsilon_{o} \omega(\omega \tau)^{2}}            [9.63]            Imaginary relative permittivity and dc conductivity

The relationship between the imaginary part \varepsilon_{r}^{\prime \prime} of the relative permittivity and the extinction coefficient K is given by Equation 9.60

2nK =  \varepsilon_{r}^{\prime \prime}

where n is the refractive index (the real part of N). Since the absorption coefficient from Example 9.13 is

\alpha=2 k^{\prime \prime}=2 k_{o} K=2\left(\frac{2 \pi}{\lambda}\right)\left(\frac{\varepsilon_{r}^{\prime \prime}}{2 n}\right)

we have,

\alpha=\left(\frac{\omega}{c}\right) \frac{\varepsilon_{r}^{\prime \prime}}{n}        [9.64]              Absorption and imaginary relative permittivity

Substituting for \varepsilon_{r}^{\prime \prime} from Equation 9.63 gives,

\alpha=\frac{\sigma_{o}}{c n \varepsilon_{o}(\omega \tau)^{2}}               [9.65]        Absorption and conductivity

This is the well-known (highly simplified) classical free carrier absorption equation. For the n-type Ge sample, the frequency ω is

\omega=\frac{2 \pi c}{\lambda}=\left[\frac{2 \pi\left(3 \times 10^{8}  m  s ^{-1}\right)}{\left(10 \times 10^{-6}  m \right)}\right]=1.88 \times 10^{14}  rad  s ^{-1}

Equation 9.63 gives,

\varepsilon_{r}^{\prime \prime}=\frac{\sigma_{o}}{\varepsilon_{o} \omega(\omega \tau)^{2}}=\frac{\left(1 \times 10^{-3} \Omega  m \right)^{-1}}{\left(8.85 \times 10^{-12}  F  m ^{-1}\right)\left(1.88 \times 10^{14}  rad  s ^{-1}\right)^{3}\left(2.5 \times 10^{-13}  s \right)^{2}}

i.e., \quad  \varepsilon_{r}^{\prime \prime}=2.72 \times 10^{-4}

The absorption coefficient α due to free carriers is given by

\alpha=\frac{\sigma_{o}}{c n \varepsilon_{o}(\omega \tau)^{2}}=\frac{\left(1 \times 10^{-3}  \Omega  m \right)^{-1}}{\left(3 \times 10^{8}  m  s ^{-1}\right)(4.0)\left(8.85 \times 10^{-12}  F  m ^{-1}\right)\left[\left(1.88 \times 10^{14}  rad  s ^{-1}\right)\left(2.5 \times 10^{-13}  s \right)\right]^{2}}

i.e., \quad  \alpha=42.6  m ^{-1}
Ge is used as an optical window in various infrared application in the wavelength range approximately 2–16 μm. It is clear that the conductivity of Ge should be as low as possible to reduce free carrier absorption. The mean scattering time τ used above for electrons is inferred from the electron drift mobility equation \mu_{e}=e \tau / m_{e}^{*}  \text { by  taking }  \mu_{e}=3900  cm ^{2}  V ^{-1}  s ^{-1} and m_{e}^{*} \approx 0.12  m_{e} (Table 5.1 in Chapter 5). Notice that ω > 1 ∕ τ.

Table 5.1 Selected typical properties of Ge, Si, InP, and GaAs at 300 K
E_{g} \\ (eV) \Chi \\ (eV) N_{c} \\ (cm^{-3}) N_{v} \\ (cm^{-3}) n_{i} \\ (cm^{-3} \mu _{e} \\ (cm^{2}  V^{-1}  s^{-1}) \mu _{h} \\ (cm^{2}  V^{-1}  s^{-1}) m_{\epsilon}^{*} / m_{e} m_{h}^{*} / m_{e} \varepsilon _{r}
Ge 0.66 4.13 1.04 × 10^{19} 6.0 × 10^{18} 2.3 × 10^{13} 3900 1900 0.12a
0.56b
0.23a
0.40b
16
Si 1.10 4.01 2.8 × 10^{19} 1.2 × 10^{19} 1.0 × 10^{10} 1400 450 0.26a
1.08b
0.38a
0.60b
11.9
InP 1.34 4.50 5.2 × 10^{17} 1.1 × 10^{19} 1.3 × 10^{7} 4600 190 0.079a,b 0.46a
0.58b
12.6
GaAs 1.42 4.07 4.4 × 10^{17} 7.7 × 10^{18} 2.1 × 10^{6} 8800 400 0.067a,b 0.40a
0.50b
13.0

Related Answered Questions