Question 5.1: Find the Fourier series of the periodic function F(t) shown ...

Find the Fourier series of the periodic function F(t) shown in Fig. 5.2.

1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The function F(t) shown in the figure is defined over the interval (−T_{f}/2, T_{f}/2) by
F(t) = \begin{cases} 0 & − T_{f}/2 < t < 0\\ F_{0} &  0 ≤ t ≤ T_{f}/2 \end{cases}

Therefore, the coefficients a_{0}, a_{m},  and  b_{m} in the Fourier series of Eq. 5.3 are obtained as follows

F(t)=\frac{a_0}{2}+\sum_{n=1}^{\infty} a_n \cos n \omega_{\mathrm{f}} t+\sum_{n=1}^{\infty} b_n \sin n \omega_{\mathrm{f}} t    (5.3)

\begin{aligned} a_0 &=\frac{2}{T_{\mathrm{f}}} \int_{-T_{\mathrm{f}} / 2}^{T_{\mathrm{f}} / 2} F(t) d t=\frac{2}{T_{\mathrm{f}}}\left[\int_{-T_{\mathrm{f}} / 2}^0(0) d t+\int_0^{T_{\mathrm{f}} / 2} F_0 d t\right] \\ &=\frac{2 F_0}{T_{\mathrm{f}}} \frac{T_{\mathrm{f}}}{2}=F_0 \\ a_m &=\frac{2}{T_{\mathrm{f}}} \int_{-T_{\mathrm{f}} / 2}^{T_{\mathrm{f}} / 2} F(t) \cos m \omega_{\mathrm{f}} t d t \\ &=\frac{2}{T_{\mathrm{f}}}\left[\int_{-T_{\mathrm{f}} / 2}^0(0) \cos m \omega_{\mathrm{f}} t d t+\int_0^{T_{\mathrm{f}} / 2} F_0 \cos m \omega_{\mathrm{f}} t d t\right] \\ &=\left.\frac{2 F_0}{m \omega_{\mathrm{f}} T_{\mathrm{f}}} \sin m \omega_{\mathrm{f}} t\right|_0 ^{T_{\mathrm{f}} / 2}=\frac{2 F_0}{m \omega_{\mathrm{f}} T_{\mathrm{f}}} \sin \left(m \omega_{\mathrm{f}} T_{\mathrm{f}} / 2\right) \\ &=\frac{F_0}{\pi m} \sin m \pi=0 \\ b_m &=\frac{2}{T_{\mathrm{f}}} \int_{-T_{\mathrm{f}} / 2}^{T_{\mathrm{f}} / 2} F(t) \sin m \omega_{\mathrm{f}} t d t \\ &=\frac{2}{T_{\mathrm{f}}}\left[\int_{-T_{\mathrm{f}} / 2}^0(0) \sin m \omega_{\mathrm{f}} t d t+\int_0^{T_{\mathrm{f}} / 2} F_0 \sin m \omega_{\mathrm{f}} t d t\right] \end{aligned}

 

\begin{aligned} &=-\left.\frac{2 F_0}{m \omega_{\mathrm{f}} T_{\mathrm{f}}} \cos m \omega_{\mathrm{f}} t\right|_0 ^{T_{\mathrm{f}} / 2}=-\frac{F_0}{\pi m}[\cos m \pi-1] \\ &=\left\{\begin{array}{ll}  \frac{2 F_0}{\pi m} & \text { if } m \text { is odd } \\ 0 & \text { if } \quad m \text { is even } \end{array}=\frac{2 F_0}{m \pi}, \quad m=1,3,5, \ldots\right.\end{aligned}

Therefore, the Fourier series of the periodic forcing function shown in Fig. 5.2 is given by
\begin{aligned} F(t) &=\frac{F_0}{2}+\frac{2 F_0}{\pi} \sin \omega_{\mathrm{f}} t+\frac{2 F_0}{3 \pi} \sin 3 \omega_{\mathrm{f}} t+\frac{2 F_0}{5 \pi} \sin 5 \omega_{\mathrm{f}} t+\ldots \\ &=\frac{F_0}{2}+\sum_{n=1,3,5}^{\infty} \frac{2 F_0}{n \pi} \sin n \omega_{\mathrm{f}} t=F_0\left[\frac{1}{2}+\sum_{n=1,3,5}^{\infty} \frac{2}{n \pi} \sin n \omega_{\mathrm{f}} t\right] \end{aligned}

where \omega_{\mathrm{f}} t=2 \pi / T_{\mathrm{f}}

Related Answered Questions

Question: 5.7

Verified Answer:

The forced response of the undamped single degree ...
Question: 5.2

Verified Answer:

The function in the figure is defined as follows F...
Question: 5.6

Verified Answer:

The forced response of the damped single degree of...