Question 11.11: A new substance has the following equations of state corresp...
A new substance has the following equations of state corresponding to Eqs. (11.31a) through (11.31d). Here, we just letter the equations (a) through (d) to avoid any confusion. That is, Eq. (11.31a) is just called (a) here
p_\text{sat}= \text{exp }[A_1 − \frac{A_2}{T_\text{sat}}] (a)
p = \frac{RT}{v} – (\frac{T}{v^2})\text{exp }[B_1 − \frac{B_2}{T}] (b)
v_f = \frac{1}{C_1 + C_2 T_\text{sat}} (c)
c^0_v = D_1 = \text{constant} (d)
where A_1, A_2, B_1, B_2, C_1, C_2, and D_1 are all empirical constants. Determine the equations for u_g, u_f, h_g, h_f, s_g, and s_f for this material in the saturated region.
Learn more on how we answer questions.
For the saturation tables, let A = A_1 – A_2/T_\text{sat} and B = B_1 – B_2/T/, then p_\text{sat}= \text{exp}[A] and
p = \frac{RT}{v} – (\frac{T}{v^2})\text{exp }[B]
then
(\frac{dp}{dT})_\text{sat} = (\frac{A_2}{T^2_\text{sat}} )\text{exp }[A]
so that
T_\text{sat}(\frac{dp}{dT})_\text{sat} – p_\text{sat} = T_\text{sat} (\frac{A_2}{T^2_\text{sat}} )\text{exp }[A] – \text{exp }[A] = (\frac{A_2}{T_\text{sat}} -1) \text{exp }[A]
and
\int_{v_0}^{v_g} [T_\text{sat} (\frac{dp}{dt})_\text{sat}) – p_\text{sat}] dv =\left\{(\frac{A_2}{T_\text{sat}} -1) \text{exp }[A]\right\} (v_g − v_0)
Since Eq. (b) must be valid to the saturated vapor line, it can be solved to find v_g. For this problem, Eq. (b) is a quadratic equation in v_g with the following solution:
v_g = \frac{R T_\text{sat}}{2p_\text{sat}} + \sqrt{(\frac{R T_\text{sat}}{2p_\text{sat}})^2 – \frac{T_\text{sat}}{p_\text{sat}}\text{exp }[B] }
From Eq. (c) and the preceding result for v_g, we can now calculate v_{fg} = v_g – v_f.
Then, with c^0_v equal to a constant (D_1), we get
u_g − u_0 + \int_{T_0}^{T_\text{sat}} [T (\frac{dp}{dT})_\text{sat}) – p] dv = u_0 +c^0_v (T_\text{sat} – T_0) +\left\{(\frac{A_2}{T_\text{sat}} -1) \text{exp }[A]\right\} (v_g − v_0)
then, with vg from the preceding equation, we can easily find h_g = u_g + p_\text{sat} v_g.
To find the saturated vapor entropy, we need to determine
\int_{v_0}^{v_g}(\frac{dp}{dt})_\text{sat} dv = \int_{v_0}^{v_g}(\frac{A_2}{T^2_\text{sat}}) \text{exp }[A] dv = \left\{(\frac{A_2}{T^2_\text{sat}}) \text{exp }[A] \right\} (v_g − v_0)
Then, with c^0_v equal to a constant, we get
s_g = s_0 + \int_{T_0}^{T_\text{sat}} \frac{c^0_v}{T} dT + \int_{v_0}^{v} (\frac{dp}{dt})_\text{sat} dv
= s_0 + c^0_v \text{ln} (\frac{T_\text{sat}}{T_0} ) + \left\{(\frac{A_2}{T^2_\text{sat}} )\text{exp }[A]\right\} (v_g − v_0)
Now, we can determine the remaining saturated liquid properties as
h_f = h_g −h_{fg} = h_g −T_\text{sat} v_{fg} (\frac{dp}{dt})_\text{sat} = h_g −v_{fg} (\frac{A_2}{T_\text{sat}})\text{exp }[A]
u_f = u_g − u_{fg} = u_g − (h_{fg} − p_\text{sat} v_{fg}) = u_g \left\{v_{fg} (\frac{A_2}{T_\text{sat}}) \text{exp }[A] – p_\text{sat} v_{fg}\right\}
and
s_f = s_g − s_{fg} = s_g − \frac{h_{fg}}{T_\text{sat}} = s_g − v_{fg} \text{exp }[A] (\frac{A_2}{T^2_\text{sat}})
Inserting the empirical values for the constants A_1 through D_1 into these equations provides the desired set of property relations for this material in the saturated region.