Question 11.11: A new substance has the following equations of state corresp...

A new substance has the following equations of state corresponding to Eqs. (11.31a) through (11.31d). Here, we just letter the equations (a) through (d) to avoid any confusion. That is, Eq. (11.31a) is just called (a) here

p_\text{sat}= \text{exp }[A_1 − \frac{A_2}{T_\text{sat}}]                                   (a)

p = \frac{RT}{v} – (\frac{T}{v^2})\text{exp }[B_1 − \frac{B_2}{T}]                        (b)

v_f = \frac{1}{C_1 + C_2  T_\text{sat}}                                                 (c)

c^0_v = D_1 = \text{constant}                                      (d)

where A_1, A_2, B_1, B_2, C_1, C_2, and D_1 are all empirical constants. Determine the equations for u_g, u_f, h_g, h_f, s_g, and s_f for this material in the saturated region.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For the saturation tables, let A = A_1 – A_2/T_\text{sat} and B = B_1 – B_2/T/, then p_\text{sat}= \text{exp}[A] and

p = \frac{RT}{v} – (\frac{T}{v^2})\text{exp }[B]

then

(\frac{dp}{dT})_\text{sat} = (\frac{A_2}{T^2_\text{sat}} )\text{exp }[A]

so that

T_\text{sat}(\frac{dp}{dT})_\text{sat}  –  p_\text{sat} = T_\text{sat} (\frac{A_2}{T^2_\text{sat}} )\text{exp }[A] – \text{exp }[A] = (\frac{A_2}{T_\text{sat}} -1) \text{exp }[A]

and

\int_{v_0}^{v_g} [T_\text{sat} (\frac{dp}{dt})_\text{sat})  –  p_\text{sat}] dv =\left\{(\frac{A_2}{T_\text{sat}} -1) \text{exp }[A]\right\} (v_g − v_0)

Since Eq. (b) must be valid to the saturated vapor line, it can be solved to find v_g. For this problem, Eq. (b) is a quadratic equation in v_g with the following solution:

v_g = \frac{R T_\text{sat}}{2p_\text{sat}} + \sqrt{(\frac{R T_\text{sat}}{2p_\text{sat}})^2 – \frac{T_\text{sat}}{p_\text{sat}}\text{exp }[B] }

From Eq. (c) and the preceding result for v_g, we can now calculate v_{fg} = v_g – v_f.

Then, with c^0_v equal to a constant (D_1), we get

u_g − u_0 + \int_{T_0}^{T_\text{sat}} [T (\frac{dp}{dT})_\text{sat})  –  p] dv = u_0 +c^0_v (T_\text{sat} – T_0) +\left\{(\frac{A_2}{T_\text{sat}} -1) \text{exp }[A]\right\} (v_g − v_0)

then, with vg from the preceding equation, we can easily find h_g = u_g + p_\text{sat} v_g.

To find the saturated vapor entropy, we need to determine

\int_{v_0}^{v_g}(\frac{dp}{dt})_\text{sat} dv = \int_{v_0}^{v_g}(\frac{A_2}{T^2_\text{sat}}) \text{exp }[A] dv = \left\{(\frac{A_2}{T^2_\text{sat}}) \text{exp }[A] \right\} (v_g − v_0)

Then, with c^0_v equal to a constant, we get

s_g = s_0 + \int_{T_0}^{T_\text{sat}} \frac{c^0_v}{T} dT + \int_{v_0}^{v} (\frac{dp}{dt})_\text{sat} dv

= s_0 + c^0_v  \text{ln} (\frac{T_\text{sat}}{T_0} ) + \left\{(\frac{A_2}{T^2_\text{sat}} )\text{exp }[A]\right\} (v_g − v_0)

Now, we can determine the remaining saturated liquid properties as

h_f = h_g −h_{fg} = h_g −T_\text{sat} v_{fg} (\frac{dp}{dt})_\text{sat} = h_g −v_{fg} (\frac{A_2}{T_\text{sat}})\text{exp }[A]

u_f = u_g − u_{fg} = u_g − (h_{fg} − p_\text{sat} v_{fg}) = u_g \left\{v_{fg} (\frac{A_2}{T_\text{sat}})  \text{exp }[A] –  p_\text{sat} v_{fg}\right\}

and

s_f = s_g − s_{fg} = s_g − \frac{h_{fg}}{T_\text{sat}} = s_g − v_{fg}  \text{exp }[A] (\frac{A_2}{T^2_\text{sat}})

Inserting the empirical values for the constants A_1 through D_1 into these equations provides the desired set of property relations for this material in the saturated region.

Related Answered Questions

Question: 11.10

Verified Answer:

From Table 3.2, for water, we find that Table ...