Question 15.2: For the beam and loading shown determine (a) the equation of...

For the beam and loading shown determine (a) the equation of the elastic curve, (b) the slope at end A, (c) the maximum deflection.

15.2
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

STRATEGY: Determine the elastic curve directly from the load distribution using Eq. (15.8), applying the appropriate boundary conditions. Use this equation to find the desired slope and deflection.
MODELING
and ANALYSIS:
Differential Equation of the Elastic Curve.
From Eq. (15.8),

\frac{d^4y}{dx^4}=-\frac{w(x)}{EI} \quad \quad \quad \pmb{(15.8)} \\ EI\frac{d^4y}{dx^4}=-w(x)=-w_0\sin\frac{\pi x}{L} \quad \quad \quad \pmb{(1)}

Integrate Eq. (1) twice:

EI\frac{d^3y}{dx^3}=V=+w_0\frac{L}{\pi} \cos\frac{\pi x}{L}+C_1 \quad \quad \quad \pmb{(2)} \\ EI\frac{d^2y}{dx^2}=M=+w_0\frac{L^2}{\pi^2}\sin\frac{\pi x}{L}+C_1x +c_2 \quad \quad \quad \pmb{(3)}

Boundary Conditions:      Refer to Fig. 1.
[
x = 0, M = 0]:                             From Eq. (3),                              C_2 = 0
[
x = L, M = 0]:                             Again using Eq. (3),

0=w_0\frac{L^2}{\pi^2} \sin \pi+C_1L \quad \quad C_1=0

Thus,

EI\frac{d^2y}{dx^2}=+w_0\frac{L^2}{\pi^2}\sin\frac{\pi x}{L} \quad \quad \quad \pmb{(4)}

Integrate Eq. (4) twice:

EI\frac{dy}{dx}=EI \ \theta=-w_0\frac{L^3}{\pi^3}\cos\frac{\pi x}{L}+C_3 \quad \quad \quad \pmb{(5)} \\ EI \ y=-w_0\frac{L^4}{\pi^4}\sin\frac{\pi x}{L}+C_3x+C_4 \quad \quad \quad \pmb{(6)}

Boundary Conditions:    Refer to Fig. 1.

[x = 0, y = 0]:                             Using Eq. (6),                            C_4 = 0
[
x = L, y = 0]:                             Again using Eq. (6),                C_3 = 0

a. Equation of Elastic Curve.            EIy=-w_0\frac{L^4}{\pi ^4}\sin\frac{\pi x}{L}

b. Slope at End A.    Refer to Fig. 2. For x = 0,

EI \ \theta_A=-w_0\frac{L^3}{\pi ^3}\cos0 \quad \quad \quad \theta_A=\frac{w_0 L^3}{\pi^3 EI} \measuredangle

c. Maximum Deflection.     Referring to Fig. 2, for x=\frac{1}{2}L,

ELy_{\text{max}}=-w_0\frac{L^4}{\pi^4}\sin\frac{\pi}{2} \quad \quad \quad y_{\text{max}}=\frac{w_0 L^4}{\pi ^4 EI}\downarrow

REFLECT and THINK: As a check, we observe that the directions of the slope at end A and the maximum deflection are consistent with the deflected shape anticipated for this loading (Fig. 1).

15.21
15.22

Related Answered Questions