Question 3.8: The following readings were taken during a trial of a single...

The following readings were taken during a trial of a single-cylinder doubleacting non-condensing steam engine running at 240 r.p.m.
Cylinder diameter                                                             250 mm
Piston rod diameter                                                          50 mm
Stroke of the engine                                                          350 mm
Cut-off                                                                                 30% of the stroke
Length of the indicator diagram                                    53 mm
Area of the indicator diagram for cover end               1570 mm²
Area of the indicator diagram for crank end              1440 mm²
Spring number                                                                  0.12 bar/mm
Circumference of the brake wheel                                 5.25 m
Circumference of the brake rope                                   62.5 mm
Dead load on the brake                                                    1900 N
Reading of the spring balance                                        190 N
Pressure of the steam supplied                                       10.5 bar
Dryness fraction of steam supplied                                0.92
Find : (i) Indicated power (I.P.) ;
(ii) Brake power (B.P.) ;
(iii) Mechanical efficiency ;
(iv) Specific steam consumption on I.P. and B.P. basis ;
(v) Brake thermal efficiency.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(i) Indicated power (I.P.) :

I.P.  =  \frac{10  p_{m_1} LA_{1} N}{6}   +  \frac{10  p_{m_2} LA_{2} N}{6}                                                   …(i)

p_{m}  =  \frac{Area   of   the   indicator   diagram   (A )  ×   Spring     number   (S) }{Length   of   the   indicator   diagram  (L)}

∴                              p_{m_1}  =  \frac{A_{1} S}{L}  =  \frac{1570  ×   0.12 }{53}  =  3.55   bar   

and                          p_{m_2}  =  \frac{A_{2} S}{L}  =  \frac{1440  ×   0.12 }{53}  =  3.26   bar   

A_{1} = π/4 D² = π/4 × 0.25² = 0.04908 m²
A_{2} = π/4 (D² –  d²) = π/4 (0.25²  –   0.05²) = 0.04712 m²
Inserting these values in eqn. (i), we get

I.P.  =  \frac{10 ×  3.55  ×  0.35  ×  0.04908 × 240 }{6}   +  \frac{10 ×  3.26  ×  0.35  ×  0.04712 × 240}{6}

= 24.4 + 21.5 = 45.9 kW.

(ii) Brake power (B.P.) :

B.P.  =  \frac{(W  –  S)  π (D  +  d ) N}{60  × 10³}   =  \frac{(1900  –  190)  ×  \left\lgroup  5.25  +   \frac{62.5}{1000}  \right\rgroup × 240 }{60  ×  1000}   = 36.34 kW. 

(iii) Mechanical efficiency,  η_{mech} :                             [∵     pD  =  5.25  m;    π d  =     \frac{62.5}{1000}   m                                                           …Given] 

 η_{mech}   =  \frac{B.P. }{I.P.}   =  \frac{36.34}{45.9}   =   0.7917    =     79.17%.

(iv) Specific steam consumption :
Steam consumption per hour,   m_{s} = Steam consumed/revolution × r.p.m. × 60
= [(steam consumption of cover end/stroke + steam consumption of crank end/stroke) × r.p.m. × 60]

= [ \frac{π / 4  D²  × L }{r}  +  \frac{π / 4  (D² –  d²)   L }{r}  ]  × \frac{r.p.m  ×   60  }{specific    volume   of    steam}

where r = cut-off ratio.

∴                                m_{s}  =  \frac{π}{4} . \frac{L}{r} [D²  +  (D²   –  d²)]  × \frac{240  ×   60}{x v_{g}}

= \frac{π}{4} × \frac{0.35}{3.33}  [0.25²  +  (0.25²  –  0.05²)]  ×  \frac{240  ×   60}{0.92 ×  0.185 }

[∵           r = \frac{1}{0.3}  = 3.33      and      v_{g}  = 0.185   m³ / kg    at    10.5    bar    from    steam   tables]

= 855.56 kg/h

Specific steam consumption on I.P. basis

\frac{855.56}{45.9}    =  18.64 kg/kWh.

Specific fuel consumption on B.P. basis

\frac{855.56}{36.34}    =  23.54 kg/kWh.

(v) Brake thermal efficiency:
Brake thermal efficiency,

η_{th(B)}   =  \frac{B.P.}{m_{s} (h_{1}  –  h_{f_2})}

Here                      h _{1}  =  h_{f_1}   +   x _{1} h_{fg_1}                                    [At 10.5 bar, from steam tables :  h_{f_1}  =  772  kJ / kg,    h_{fg}  =  2005.9  kJ / kg] 

= 772 + 0.92 × 2005.9 = 2617.4 kJ/kg

h_{f_2}  =  0,     since engine is non-condensing.

∴      η_{th(B)}   =  \frac{36.34}{\frac{855.56}{3600}  ×  2617.4} 0.0584 or 5.84%.

Related Answered Questions