Question 3.9: Steam is admitted to an engine for 35% of the stroke with a ...

Steam is admitted to an engine for 35% of the stroke with a pressure of 7.2 bar, the law of expansion followed is pV^{1.1} = constant. Compression starts at 55% of return stroke and follows the law pV^{1.2} = constant, the clearance volume is 20% of the displacement volume and the back pressure is 660 mm of mercury vacuum when barometer reads 760 mm of mercury. Estimate the mean effective pressure and indicated power of a double-acting engine with cylinder diameter 320 mm, stroke 480 mm and speed 200 r.p.m.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Cylinder diameter,                                                    D = 320 mm = 0.32 m
Stroke length,                                                             L = 480 mm = 0.48 m
Admission steam pressure,                                      p_{1} = 7.2 bar
Cut-off                                                                         = 0.35  V_{s}
Law of expansion,                                                      pV^{1.1} = constant
Law of compression,                                                  pV^{1.2} = constant
Clearance volume,                                                       V_{c} = 0.2  V_{s}
Back pressure,                                                            p_{b} = 660 mm of Hg
Barometer reading                                                     = 760 mm of Hg
Engine speed,                                                            N = 200 r.p.m.
Refer Fig. 36.

Back pressure ,    p_{b} =  \frac{760  –  660}{760}  ×  1.013  =  0.133   bar

Considering expansion curve, pV^{1.1} = constant

p_{1}V_{1}^{1.1}  =  p_{2}V_{2}^{1.1}

 

  p_{2}  =   p_{1}   ( \frac{V_{1}}{V_{2}}  )^{1.1}  =  7.2  [\frac{(0.35  V_{s}  +  0.2  V_{s})}{( V_{s}  +  0.2  V_{s})}]^{1.1}

7.2  (\frac{0.55}{1.2}) ^{1.1}    =  3.05 bar

Considering the compression curve, pV^{1.2} = constant

p_{4}V_{4}^{1.2}  =  p_{5}V_{5}^{1.2}

 

p_{5}  =  p_{4}  × (\frac{V_{4}}{V_{2}}) ^{1.2}   =   0.133  ×  [\frac{0.45  V_{s}  +  0.2  V_{s}}{0.2  V_{s}}] ^{1.2}

0.133  ×  ( \frac{0.65}{0.2} ) ^{1.2}    =  0.55   bar.

Also, mean effective pressure,    p_{m}   =  \frac{Area   of   the   indicator    diagram }{Stroke   volume} 

\frac{area ‘61ab6’  +   area ‘12ca1’  –  area ‘43cd4’  –   area ‘54db5’ }{V_{s}}

\frac{[(7.2  ×  0.35 V_{s}  )  \left\{\frac{7.2  ×  0.55 V_{s}   –   3.05  ×  1.2  V_{s}}{1.1   –  1} \right\} ] }{V_{s}}   –    \frac{(0.133  ×  0.55 V_{s})  +  (\frac{ 0.55 ×  0.2  V_{s}  –  0.133  ×  0.65  V_{s}  }{1.2   –  1} )}{V_{s}}

\frac{[2.52  + \frac{3.96  –  3.66}{0.1}]  –  [0.073  +  \frac{0.11  –  0.086}{0.2}]}{1}

\frac{(2.52  +  3.0)  –  (0.073  +  0.12)}{1}   =  5.33   bar

∴     Indicated power, I.P. \frac{10    p_{m}  LAN }{3}                                                     [∵                  Engine is double-acting]

\frac{10 ×  5.33  ×  0.48  ×  π / 4  ×  0.32 ² ×  200 }{3}

= 137.17 kW.

39

Related Answered Questions