Question 3.10: A steam locomotive is coupled with two single-cylinder, doub...

A steam locomotive is coupled with two single-cylinder, double-acting engine of 350 mm in diameter and 550 mm stroke. The driving wheels are 2.2 m in diameter. The pressure of steam supplied to the engine is 11 bar and dry saturated. The exhaust pressure of steam is 1.1 bar. The maximum cut-off is 80% of the stroke. Find out the tractive effort at 15 km/h speed with maximum cut-off. Assume the diagram factor 0.8 and mechanical efficiency 70%.
If the resistance to train is 12 N/1000 N at 90 km/h speed, determine the total train load that can be hauled at this speed if the cut-off is 20% of the stroke. Assume diagram factor at this speed as 0.70 and mechanical efficiency 80%.
Assume that the engine is directly coupled to the driving wheel.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Number of cylinder,                                                     n = 2
Diameter of a cylinder,                                                D = 350 mm = 0.35 m
Stroke length,                                                                 L = 550 mm = 0.55 m
Diameter of a driving wheel,                                      D_{w} = 2.2 m
Pressure of steam supplied,                                        p_{1} = 11 bar
Quality of steam,                                                            x_{1} = 1
Exhaust pressure of steam,                                        p_{b} = 1.1 bar
Maximum cut-off                                                           = 0.8 V_{s}
Diagram factor,                                                              (D.F.) _{1} = 0.8
Mechanical efficiency                                                     = 70%
Tractive effort, P at 15 km/h :
Resistance to train                                                           = 12 N/1000 N
Speed                                                                                   = 90 km/h
Cut-off                                                                                 = 0.2 V_{s}
Diagram factor,                                                                 (D.F.)_{2} = 0.7
Mechanical efficiency                                                        = 80%

(i) Tractive effort, P :

p_{m(th.)}   =  \frac{p_{1}}{r}  (1  +  \log_{e}  r )  –  p_{b}  =  \frac{11}{ 1 / 0.8}  (1  +  \log_{e}  \frac{1}{0.8})  –  1.1    =  9.66    bar.

p_{m(act.)}   =  Diagram   factor  (D.F.)_{1}  ×  p_{m(th.)}
= 0.8 × 9.66 = 7.73 bar

Speed of the train   =  \frac{π  D_{w}  N  ×  60}{1000}

=  15                                             (given)

∴                              N  =  \frac{15 ×  1000}{π  ×  2.2  ×  60}   =  36.2    r.p.m

As the engine is directly coupled to the driving wheel, the rotational speed of the engine is equal to the rotational speed of the driving wheel.

∴                                            I.P. =  \frac{n  ×  10    p_{m}  LAN }{3}

\frac{2   ×  10  ×   7.73  ×   0.55   ×  π  / 4  ×   0.35²    ×  36.2}{3}

[∵                    n = 2 and the engine is double-acting]

= 98.7 kW

∴                   B.P.   =  η_{mech.}  ×   I.P.   =  0.7  ×   98.7  =  69.1 kW

B.P. = Tractive effort × speed in metres/sec.

69.1   =  P ×  (\frac{15  ×   1000}{ 60   ×   60} )   where P is in kN

∴                                 P =  \frac{69.1  ×   3600}{15  ×   1000}    =  16.584   kN.

i.e.,                                   Tractive effort = 16.584 kN.
(ii) Total train load W_{t}  :

p_{m(th.)}   =  \frac{p_{1}}{r}  (1  +  \log_{e}  r )  –  p_{b}

  \frac{11}{5}  (1  +  \log_{e}  5 )  –  1.1                                       [ ∵                r  =  \frac{1}{0.2}  =  5 ]

= 4.64 bar

p_{m(act.)}   =  Diagram   factor  (D.F.)_{2}  ×  p_{m(th.)}

=  0.7 × 4.64 = 3.25 bar

Speed of the engine  = 36.2 × \frac{90}{15}   =  217.2 r.p.m.
I.P. ∝ p_{m(act.)}  N

∴                    I.P. at net cut-off and new speed is given by

I.P.  =  98.7 ×  \frac{3.25}{7.73}  ×    \frac{217.2}{36.2}    =  248.98 kW

B.P. =     η_{mech.}    × 248.98 = 0.8 × 248.98 = 199.2 kW

Tractive effort,                      P =  \frac{B.P.}{Speed    in    metre /s} ,    where P is in kN

\frac{199.2}{(\frac{90  ×  1000}{60  ×  60 })}   =  7.968 kN

∴                     Total train load,  W_{t}  =  \frac{7.968  (kN)  ×  1000  (N)}{12  (N) }  =  664 kN.

Related Answered Questions