Question 3.15: A double-acting single-cylinder steam engine runs at 250 r.p...

A double-acting single-cylinder steam engine runs at 250 r.p.m. and develops 30 kW. The pressure limits of operation are 10 bar and 1 bar. Cut-off is 40% of the stroke. The L/D ratio is 1.25 and the diagram factor is 0.75. Assume dry saturated steam at inlet, hyperbolic expansion and negligible effect of piston rod. Find :
(i) Mean effective pressure,                                          ( ii) Cylinder dimensions, and
(iii) Indicated thermal efficiency.                                                       (AMIE Summer, 2001)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Speed of the steam engine,                                    N = 250 r.p.m.
Power developed,                                                    P = 30 kW
Pressure limits of operation : 10 bar ( p_{1} ), 1 bar ( p_{b} )
Cut-off ratio,                                                             r = \frac{1}{0.4}   = 2.5
L/D ratio                                                                    = 1.25
Diagram factor,                                                         D.F. = 0.75
Condition of steam at inlet to the engine = Dry saturated.

(i) Mean effective pressure, p_{m} :

p_{m}   =  D.F.   [\frac{p_{1}}{r}  (1 + \log _{e}  r )  –  p_{ b}]

=  0.75  [\frac{10}{2.5}  (1 + \log _{e}  2.5)   –  1  ]  \simeq     5.0 bar.

(ii) Cylinder dimensions, L and D :

Indicated power, I.P. =    \frac{10   p_{m}   LAN  }{3}    kW

or                                30    =  \frac{10  ×   5.0  ×  125D  ×  \frac{π}{4}   D²  ×   250}{3}  =   4090.6    D³   

or                                D³  =  \frac{30}{4090.6 }    or     Cylinder dia.,   D   =   (\frac{30}{4090.6 } )^{1 / 3 }

= 0.194 m or 194 mm.

Length of stroke,                          L = 1.25 D = 1.25 × 194 = 242.5 mm.

(iii) Indicated thermal efficiency, η_{th(I)} :

Mean flow rate of steam,  \dot{m}_{s}  =  \frac{ \frac{π}{4} D²  ×   L ×  \frac{1}{r}  ×   2    ×  N}{v_{g}}

=  \frac{ \frac{π}{4} ×  (0.194)²  ×   0.2425  ×  \frac{1}{2.5}  ×   2    ×  \frac{250}{60}}{0.194}   =  0.1231 kg/s

[where v_{g} = specific volume of dry saturated steam at 10 bar = 0.194 m³/kg (from steam tables)]

∴                                  Indicated thermal efficiency,  η_{th(I).}    =  \frac{I.P.}{\dot{m}_{s}  (h_{1}  –   h_{f} ) }

\frac{30}{0.1231  (2776.2  –   417.5) }   =  0.1033 or 10.33%. 

[where, h_{1} = Enthalpy of dry saturated steam at 10 bar = 2776.2 kJ/kg, and
h_{f} = Enthalpy of water at 1 bar = 417.5 kJ/kg (from steam tables)]

Related Answered Questions