Question 9.CS.1: Motor-Belt-Drive Shaft Design for Steady Loading A motor tra...

Motor-Belt-Drive Shaft Design for Steady Loading

A motor transmits the power PP at the speed of nn by a belt drive to a machine (Figure 9.4a). The maximum tensions in the belt are designated by F1F_{1} and F2F_{2} with F1> F2F_{1} \gt  F_{2}. The shaft will be made of cold-drawn AISI 1020 steel of yield strength SyS_{y}. Note that design of main and drive shafts of a gear box will be considered in Case Study 18.5. Belt drives are discussed in details in Chapter 13.

Find: Determine the diameter DD of the motor shaft according to the energy of distortion theory of failure, based on a factor of safety nn with respect to yielding.

Given: Prescribed numerical values are

L=230 mma=70 mmr=51 mmP=55 kWn0=4500 rpmSy=390 MPa L=230  mm \quad a=70  mm \quad r=51  mm \quad P=55  kW \\ n_0=4500  rpm\quad S_y=390  MPa ( from Table B.3) n=3.5 \quad n=3.5 

Assumptions: Friction at the bearings is omitted; bearings act as simple supports. At maximum load F1=5F2F_{1} = 5F_{2}.

F9.4
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Reactions at bearings. From Equation 1.15, the torque applied by the pulley to the motor shaft equals

kW=FtV1000=Tn9549 kW =\frac{F_t V}{1000}=\frac{T n}{9549}           (1.15)

TAC=9549Pn0=9549(55)4500=116.7 Nm T_{A C}=\frac{9549 P}{n_0}=\frac{9549(55)}{4500}=116.7  N \cdot m

The forces transmitted through the belt is therefore

F2F15=TACr=116.70.051=2288 N F_2-\frac{F_1}{5}=\frac{T_{A C}}{r}=\frac{116.7}{0.051}=2288  N

or

F1=2860 N and F2=572 N F_1=2860  N \quad \text { and } \quad F_2=572  N

Applying the equilibrium equations to the free-body diagram of the shaft (Figure 9.4b), we have

MA=3432(0.3)RB(0.23)=0,RB=4476.5 NFy=RA+RB3432=0,RA=1044.5 N \begin{array}{c} \sum M_A=3432(0.3)-R_B(0.23)=0, \quad R_B=4476.5  N \\ \sum F_y=-R_A+R_B-3432=0, \quad R_A=1044.5  N \end{array}

The results indicate that RAR_{A} and RBR_{B} act in the directions shown in the figure.

Principal stresses. The largest moment takes place at support BB (Figure 9.4c) and has a value of

MB=3432(0.07)=240.2 Nm M_B=3432(0.07)=240.2  N \cdot m

Inasmuch as the torque is constant along the shaft, the critical sections are at BB. It follows that

τ=16TπD3=16(116.7)πD3=1867.2πD3σx=32MπD3=32(240.2)πD3=7686.4πD3 \begin{array}{c} \tau=\frac{16 T}{\pi D^3}=\frac{16(116.7)}{\pi D^3}=\frac{1867.2}{\pi D^3} \\ \sigma_x=\frac{32 M}{\pi D^3}=\frac{32(240.2)}{\pi D^3}=\frac{7686.4}{\pi D^3} \end{array}

and σy\sigma _{y} = 0. For the case under consideration, Equation 3.33 reduce to

σmax,min=σ1.2=σx+σy2±(σxσy2)2+τxy2 \sigma_{\max , \min }=\sigma_{1.2}=\frac{\sigma_x+\sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x-\sigma_y}{2}\right)^2+\tau_{x y}^2}           (3.33)

σ1,2=σx2±(σx2)2+τ2=3843.2πD3±1πD3(7686.4)24+(1867.2)2=1πD3(3843.2±4272.8) \begin{aligned} \sigma_{1,2} &=\frac{\sigma_x}{2} \pm \sqrt{\left(\frac{\sigma_x}{2}\right)^2+\tau^2} \\ &=\frac{3843.2}{\pi D^3} \pm \frac{1}{\pi D^3} \sqrt{\frac{(7686.4)^2}{4}+(1867.2)^2} \\ &=\frac{1}{\pi D^3}(3843.2 \pm 4272.8) \end{aligned}

from which

σ1=8116πD3σ2=429.6πD3 \sigma_1=\frac{8116}{\pi D^3} \quad \sigma_2=-\frac{429.6}{\pi D^3}      (b)

Energy of distortion theory of failure. Through the use of Equation 6.14,

[σ12σ1σ2+σ22]1/2=Syn \left[\sigma_1^2-\sigma_1 \sigma_2+\sigma_2^2\right]^{1 / 2}=\frac{S_y}{n}

This, after introducing Equation (b), leads to

1πD3[(8116)2(8116)(429.6)+(429.6)2]1/2=390(106)3.5 \frac{1}{\pi D^3}\left[(8116)^2-(8116)(-429.6)+(-429.6)^2\right]^{1 / 2}=\frac{390\left(10^6\right)}{3.5}

Solving,

DD = 0.0288 m = 28.8 mm

Comment: A commercially available shaft diameter of 30 mm should be selected.

Related Answered Questions