Question 7.5: A beam, to be made from ASTM A36 structural steel plate, is ...
A beam, to be made from ASTM A36 structural steel plate, is to be designed to carry the static loads shown in Figure 7–16. The cross section of the beam will be rectangular with its long dimension vertical and having a thickness of 32.0 mm. Specify a suitable height for the cross section. A photograph showing a similar loading pattern in a laboratory setting can be seen in Figure 9–1.


Learn more on how we answer questions.
Objective Specify the height of the rectangular cross section.
Given Loading pattern shown in Figure 7–16; ASTM A36 structural steel
Width of the beam to be 32.0 mm; static loads
Analysis We will use the design procedure A from this section.
Results Step 1. Figure 7–17 shows the completed shearing force and bending moment diagrams. The maximum bending moment is 6810 N · m between the loads, in the middle of the beam span from x = 1.2 – 3.6 m.
Step 2. From Table 7–1, for static load on a ductile material,
TABLE 7–1 Design stress guidelines: Bending stresses. | ||
Manner of loading | Ductile material | Brittle material |
Static | \sigma_{d} = s_{y} /2 | \sigma_{d} = s_{u} /6 |
Repeated | \sigma_{d} = s_{y} /8 | \sigma_{d} = s_{u} /10 |
Impact or shock | \sigma_{d} = s_{y} /12 | \sigma_{d} = s_{u} /15 |
\sigma_{d} = s_{y} /2
Step 3. From Appendix A–12, s_{y} = 248 MPa for ASTM A36 steel. For a static load, a design factor of N = 2 based on yield strength is reasonable. Then,
A–12 Properties of structural steels .^{a} | |||||
Ultimate strength, s_{u}^{a} | Yield strength, s_{y}^{a} | ||||
Material ASTM No. and products | ksi | Mpa | ksi | Mpa | Percent elongation in 2 in. |
A36—carbon steel; available in shapes,plates, and bars | 58 | 400 | 36 | 248 | 21 |
A 53—Grade B pipe | 60 | 414 | 35 | 240 | 23 |
A242—HSLA, corrosion resistant; available in shapes, plates, and bars | |||||
70 | 483 | 50 | 345 | 21 | |
67 | 462 | 46 | 317 | 21 | |
63 | 434 | 42 | 290 | 21 | |
A500—Cold-formed structural tubing | |||||
Round, Grade B | 58 | 400 | 42 | 290 | 23 |
Round, Grade C | 62 | 427 | 46 | 317 | 21 |
Round, Grade B | 58 | 400 | 46 | 317 | 23 |
Round, Grade C | 62 | 427 | 50 | 345 | 21 |
A501—Hot-formed structural tubing, round or shaped | 58 | 400 | 36 | 248 | 23 |
A514—Quenched and tempered alloy steel; available in plate only | |||||
110 | 758 | 100 | 680 | 18 | |
100 | 690 | 90 | 620 | 16 | |
A572—HSLA columbium–vanadium steel; available in shapes, plates, and bars | |||||
Grade 42 | 60 | 414 | 42 | 290 | 24 |
Grade 50 | 65 | 448 | 50 | 345 | 21 |
Grade 60 | 75 | 517 | 60 | 414 | 18 |
Grade 65 | 80 | 552 | 65 | 448 | 17 |
A913—HSLA, grade 65; available in shapes only | 80 | 552 | 65 | 448 | 17 |
A992—HSLA; available in W-shapes only | 65 | 448 | 50 | 345 | 21 |
\sigma_{d} = \frac{ s_{y}}{N} = \frac{248 MPa}{2} = 124 MPa
Step 4. The required section modulus, S, is
S_{min} = \frac{M}{\sigma_{d}} = \frac{6810 N·m\left\lgroup \frac{1000 mm}{1 m}\right\rgroup }{124 MPa} = 54 919 mm³
Step 5. The formula for the section modulus for a rectangular section with a height h and a thickness b is
S = \frac{I}{c} = \frac{bh^{3}}{12(h/2)} = \frac{bh^{2}}{6}
For the beam in this design problem, b will be 1.25 in. Then, solving for h gives
S = \frac{bh^{3}}{12(h/2)}
h_{min} = \sqrt{\frac{6S_{min}}{b}}=\sqrt{\frac{6(54 919 mm^{3})}{32}}
h_{min} = 101.5 mm
From Appendix A–2, specify the next larger preferred size, 110 mm.
A–2 Preferred basic sizes. | ||||||||
Fractional (in.) | Decimal (in.) | SI metric (mm) | ||||||
\frac{1}{64} | 0.015 625 | 5 | 5.000 | 0.010 | 2.00 | 8.50 | 1.0 | 40 |
\frac{1}{32} | 0.031 25 | 5 \frac{1}{4} | 5.250 | 0.012 | 2.20 | 9.00 | 1.1 | 45 |
\frac{1}{16} | 0.0625 | 5 \frac{1}{2} | 5.500 | 0.016 | 2.40 | 9.50 | 1.2 | 50 |
\frac{3}{32} | 0.093 75 | 5 \frac{3}{4} | 5.750 | 0.020 | 2.60 | 10.00 | 1.4 | 55 |
\frac{1}{8} | 0.1250 | 6 | 6.000 | 0.025 | 2.80 | 10.50 | 1.6 | 60 |
\frac{5}{32} | 0.156 25 | 6 \frac{1}{2} | 6.500 | 0.032 | 3.00 | 11.00 | 1.8 | 70 |
\frac{3}{16} | 0.1875 | 7 | 7.000 | 0.040 | 3.20 | 11.50 | 2.0 | 80 |
\frac{1}{4} | 0.2500 | 7 \frac{1}{2} | 7.500 | 0.05 | 3.40 | 12.00 | 2.2 | 90 |
\frac{5}{16} | 0.3125 | 8 | 8.000 | 0.06 | 3.60 | 12.50 | 2.5 | 100 |
\frac{3}{8} | 0.3750 | 8 \frac{1}{2} | 8.500 | 0.08 | 3.80 | 13.00 | 2.8 | 110 |
\frac{7}{16} | 0.4375 | 9 | 9.000 | 0.10 | 4.00 | 13.50 | 3.0 | 120 |
\frac{1}{2} | 0.5000 | 9 \frac{1}{2} | 9.500 | 0.12 | 4.20 | 14.00 | 3.5 | 140 |
\frac{9}{16} | 0.5625 | 10 | 10.000 | 0.16 | 4.40 | 14.50 | 4.0 | 160 |
\frac{5}{8} | 0.6250 | 10 \frac{1}{2} | 10.500 | 0.20 | 4.60 | 15,00 | 4.5 | 180 |
\frac{11}{16} | 0.6875 | 11 | 11.000 | 0.24 | 4.80 | 15.50 | 5.0 | 200 |
\frac{3}{4} | 0.7500 | 11 \frac{1}{2} | 11.500 | 0.30 | 5.00 | 16.00 | 5.5 | 220 |
\frac{7}{8} | 0.8750 | 12 | 12.000 | 0.40 | 5.20 | 16.50 | 6 | 250 |
1 | 1.000 | 12 \frac{1}{2} | 12.500 | 0.50 | 5.40 | 17.00 | 7 | 280 |
1 \frac{1}{4} | 1.250 | 13 | 13.000 | 0.60 | 5.60 | 17.50 | 8 | 300 |
1 \frac{1}{2} | 1.500 | 13 \frac{1}{2} | 13.500 | 0.80 | 5.80 | 18.00 | 9 | 350 |
1 \frac{3}{4} | 1.750 | 14 | 14.000 | 1.00 | 6.00 | 18.50 | 10 | 400 |
2 | 2.000 | 14 \frac{1}{2} | 14.500 | 1.20 | 6.50 | 19.00 | 11 | 450 |
2 \frac{1}{4} | 2.250 | 1 | 15.000 | 1.40 | 7.00 | 19.50 | 12 | 500 |
2 \frac{1}{2} | 2.500 | 15 \frac{1}{2} | 15.500 | 1.60 | 7.50 | 20.00 | 14 | 550 |
2 \frac{3}{4} | 2.750 | 16 | 16.000 | 1.80 | 8.00 | 16 | 600 | |
3 | 3.000 | 16 \frac{1}{2} | 16.500 | 18 | 700 | |||
3 \frac{1}{4} | 3.250 | 17 | 17.000 | 20 | 800 | |||
3 \frac{1}{2} | 3.500 | 17 \frac{1}{2} | 17.500 | 22 | 900 | |||
3 \frac{3}{4} | 3.750 | 18 | 18.000 | 25 | 1000 | |||
4 | 4.000 | 18 \frac{1}{2} | 18.500 | 28 | ||||
4 \frac{1}{4} | 4.250 | 19 | 19.000 | 30 | ||||
4 \frac{1}{2} | 4.500 | 19 \frac{1}{2} | 19.500 | 35 | ||||
4 \frac{3}{4} | 4.750 | 20 | 20.000 |
Comment Because the beam is rather long there may be a tendency for it to deform laterally because of elastic instability. Lateral bracing may be required. Also, deflection should be checked using the methods discussed in Chapter 9.
