Question 19.16: Find the z parameters for the circuit in Fig. 19.52 at ω = 1...
Find the z parameters for the circuit in Fig. 19.52 at ω = 10^6 rad/s.

Learn more on how we answer questions.
Notice that we used dc analysis in Example 19.15 because the circuit in Fig. 19.49 is purely resistive. Here, we use ac analysis at ƒ = ω/2π = 0.15915 MHz, because L and C are frequency dependent.
In Eq. (19.3), we defined the z parameters as
(19.3): \pmb{z _{11}}=\left.\pmb{\frac{ V _1}{ I _1}}\right|_{ \pmb{I _2}=0}, \quad \pmb{z _{12}}=\left.\pmb{\frac{ V _1}{ I _2}}\right|_{ \pmb{I _1}=0} \\ \pmb{z _{21}}=\left.\pmb{\frac{ V _2}{ I _1}}\right|_{ \pmb{I _2}=0}, \quad \pmb{z _{22}}=\left.\pmb{\frac{ V _2}{ I _2}}\right|_{ \pmb{I _1}=0}
\pmb{z _{11}}=\left.\pmb{\frac{ V _1}{ I _1}}\right|_{\pmb{ I _2}=0}, \quad \pmb{z _{21}}=\left.\pmb{\frac{ V _2}{ I _1}}\right|_{ \pmb{I _2}=0}
This suggests that if we let \pmb{I_1} = 1 A and open-circuit the output port so that \pmb{I_2} = 0, then we obtain
\pmb{z _{11}}=\frac{\pmb{ V _1}}{1} \quad \text { and } \quad \pmb{z _{21}}=\frac{ \pmb{V _2}}{1}
We realize this with the schematic in Fig. 19.53(a). We insert a 1-A ac current source IAC at the input terminal of the circuit and two VPRINT1 pseudocomponents to obtain \pmb{V_1} \text{ and } \pmb{V_2}. The attributes of each VPRINT1 are set as AC = yes, MAG = yes, and PHASE = yes to print the magnitude and phase values of the voltages. We select Analysis/Setup/AC Sweep and enter 1 as Total Pts, 0.1519MEG as Start Freq, and 0.1519MEG as Final Freq in the AC Sweep and Noise Analysis dialog box. After saving the schematic, we select Analysis/Simulate to simulate it. We obtain \pmb{V_1} \text{ and } \pmb{V_2} from the output file. Thus,
\pmb{z _{11}}=\frac{ \pmb{V _1}}{1}=19.70 \underline{/175.7^{\circ}} \Omega, \quad \pmb{z _{21}}=\frac{ \pmb{V _2}}{1}=19.79 \underline{/170.2^{\circ}} \Omega
In a similar manner, from Eq. (19.3),
\pmb{z _{12}}=\left.\pmb{\frac{ V _1}{ I _2}}\right|_{ \pmb{I _1}=0}, \quad \pmb{z _{22}}=\left.\pmb{\frac{ V _2}{ I _2}}\right|_{ \pmb{I _1}=0}
suggesting that if we let \pmb{I_2} = 1 A and open-circuit the input port,
\pmb{z _{12}}=\frac{ \pmb{V _1}}{1} \quad \text { and } \quad \pmb{z _{22}}=\frac{ \pmb{V _2}}{1}
This leads to the schematic in Fig. 19.53(b). The only difference between this schematic and the one in Fig. 19.53(a) is that the 1-A ac current source IA C is no w at the output terminal. We run the schematic in Fig. 19.53(b) and obtain \pmb{V_1} \text{ and } \pmb{V_2} from the output file. Thus,
\pmb{z _{12}}=\frac{ \pmb{V _1}}{1}=19.70 \underline{/175.7^{\circ}} \Omega, \quad \pmb{z _{22}}=\frac{ \pmb{V _2}}{1}=19.56 \underline{/175.7^{\circ}} \Omega

