Question 11.1: A round compression member with both ends pinned and made of...
A round compression member with both ends pinned and made of SAE 1020 cold-drawn steel is to be used in a machine. Its diameter is 25 mm, and its length is 950 mm. What maximum load can the member take before buckling would be expected? Also compute the allowable load on the column for a design factor of N=3.
Learn more on how we answer questions.
Objective Compute the critical buckling load for the column and the allowable load for a design factor of N = 3.
Given L = 950 mm. Cross section is circular; D = 25 mm. Pinned ends
Column is steel; SAE 1020 cold drawn
From Appendix A–10: s_{y} = 441 MPa; E = 207 GPa = 207 × 10^{9} N/m²
A–10 Typical properties of carbon and alloy steels .^{a} | ||||||
Ultimate | Yield | |||||
strength, s_{u} | strength, s_{y} | |||||
Material SAE no. | Condition^{b} | ksi | Mpa | ksi | Mpa | Percent elongation |
1020 | Annealed | 57 | 393 | 43 | 296 | 36 |
1020 | Hot rolled | 65 | 448 | 48 | 331 | 36 |
1020 | Cold drawn | 75 | 517 | 64 | 441 | 20 |
1040 | Annealed | 75 | 517 | 51 | 352 | 30 |
1040 | Hot rolled | 90 | 621 | 60 | 414 | 25 |
1040 | Cold drawn | 97 | 669 | 82 | 565 | 16 |
1040 | WQT 700 | 127 | 876 | 93 | 641 | 19 |
1040 | WQT 900 | 118 | 814 | 90 | 621 | 22 |
1040 | WQT 1100 | 107 | 738 | 80 | 552 | 24 |
1040 | WQT 1300 | 87 | 600 | 63 | 434 | 32 |
1080 | Annealed | 89 | 614 | 54 | 372 | 25 |
1080 | OQT 700 | 189 | 1303 | 141 | 972 | 12 |
1080 | OQT 900 | 179 | 1234 | 129 | 889 | 13 |
1080 | OQT 1100 | 145 | 1000 | 103 | 710 | 17 |
1080 | OQT 1300 | 117 | 807 | 70 | 483 | 23 |
1141 | Annealed | 87 | 600 | 51 | 352 | 26 |
1141 | Cold drawn | 112 | 772 | 95 | 655 | 14 |
1141 | OQT 700 | 193 | 1331 | 172 | 1186 | 9 |
1141 | OQT 900 | 146 | 1007 | 129 | 889 | 15 |
1141 | OQT 1100 | 116 | 800 | 97 | 669 | 20 |
1141 | OQT 1300 | 94 | 648 | 68 | 469 | 28 |
4140 | Annealed | 95 | 655 | 60 | 414 | 26 |
4140 | OQT 700 | 231 | 1593 | 212 | 1462 | 12 |
4140 | OQT 900 | 187 | 1289 | 173 | 1193 | 15 |
4140 | OQT 1100 | 147 | 1014 | 131 | 903 | 18 |
4140 | OQT 1300 | 118 | 814 | 101 | 696 | 23 |
5160 | Annealed | 105 | 724 | 40 | 276 | 17 |
5160 | OQT 700 | 263 | 1813 | 238 | 1641 | 9 |
5160 | OQT 900 | 196 | 1351 | 179 | 1234 | 12 |
5160 | OQT 1100 | 149 | 1027 | 132 | 910 | 17 |
5160 | OQT 1300 | 115 | 793 | 103 | 710 | 23 |
Analysis Use the Method of Analyzing Columns.
Results Step 1. Determine the end-fixity factor. For the pinned-end column, K = 1.0.
Step 2. Compute the effective length:
L_{e} = KL = 1.0 (L) = 950 mm
Step 3. Compute the smallest value of the radius of gyration. From Appendix A–1, for any axis of a circular cross section, r = D/4. Then,
r = \frac{D}{4} = \frac{25 mm}{4} = 6.25 mm
Step 4. Compute the slenderness ratio, SR = L_{e } /r:
SR = \frac{L_{e}}{r} = \frac{950 mm}{6.25 mm} = 152
Step 5. Compute the column constant, Cc
C_{c} = \sqrt{\frac{2 \pi^{2}E}{s_{y}}} = \sqrt{\frac{2 \pi^{2}(207 \times 10^{9} N/m^{2})}{441 \times 10^{6} N/m^{2}}} = 96.3
Step 6. Compare C_{c} with SR and decide if column is long or short. Then use the appropriate column formula to compute the critical buckling load. Since SR is greater than C_{c} , Euler’s formula applies:
P_{cr} = \frac{ \pi^{2} EA}{(SR)^{2}}
The area is
A= \frac{ \pi D^{2} }{(4} = \frac{ \pi (25 mm)^{2}}{4} = 491 mm²
Then
P_{cr} = \frac{ \pi^{2} (207 \times 10^{9} N/m^{2})(491 mm^{2})}{(152)^{2}} \times \frac{1 m²}{(10³ mm)²} = 43.4 kN
Step 7. A design factor of N = 3 is specified.
Step 8. The allowable load, P_{a} , is
P_{a} = \frac{P_{cr}}{N} = \frac{43.4 kN}{3} = 14.5 kN
