Question 11.2: Determine the critical load on a steel column having a squar...

Determine the critical load on a steel column having a square cross section 12 mm on a side with a length of 300 mm. The column is to be made of SAE 1040, hot rolled. It will be rigidly welded to a firm support at one end and connected by a pin joint at the other. Also compute the allowable load on the column for a design factor of N = 3.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Objective    Compute the critical buckling load for the column and the allowable load for a design factor of N = 3.

Given          L = 300 mm. Cross section is square; each side is b = 12 mm.

One pinned end; one fixed end; column is steel; SAE 1040 hot rolled

From Appendix A–10: s_{y} = 414 MPa; E = 207 GPa = 207 × 10^{9} N/m2

Analysis     Use the Method of Analyzing Columns.

A–10  Typical properties of carbon and alloy steels .^{a}
Ultimate Yield
strength, s_{u} strength, s_{y}
Material SAE no. Condition^{b} ksi Mpa ksi Mpa Percent elongation
1020 Annealed 57 393 43 296 36
1020 Hot rolled 65 448 48 331 36
1020 Cold drawn 75 517 64 441 20
1040 Annealed 75 517 51 352 30
1040 Hot rolled 90 621 60 414 25
1040 Cold drawn 97 669 82 565 16
1040 WQT 700 127 876 93 641 19
1040 WQT 900 118 814 90 621 22
1040 WQT 1100 107 738 80 552 24
1040 WQT 1300 87 600 63 434 32
1080 Annealed 89 614 54 372 25
1080 OQT 700 189 1303 141 972 12
1080 OQT 900 179 1234 129 889 13
1080 OQT 1100 145 1000 103 710 17
1080 OQT 1300 117 807 70 483 23
1141 Annealed 87 600 51 352 26
1141 Cold drawn 112 772 95 655 14
1141 OQT 700 193 1331 172 1186 9
1141 OQT 900 146 1007 129 889 15
1141 OQT 1100 116 800 97 669 20
1141 OQT 1300 94 648 68 469 28
4140 Annealed 95 655 60 414 26
4140 OQT 700 231 1593 212 1462 12
4140 OQT 900 187 1289 173 1193 15
4140 OQT 1100 147 1014 131 903 18
4140 OQT 1300 118 814 101 696 23
5160 Annealed 105 724 40 276 17
5160 OQT 700 263 1813 238 1641 9
5160 OQT 900 196 1351 179 1234 12
5160 OQT 1100 149 1027 132 910 17
5160 OQT 1300 115 793 103 710 23

Results      Step 1. Determine the end-fixity factor. For the fixed-pinned-end column, K = 0.80 is a practical value (Figure 11–4).

Step 2. Compute the effective length:

L_{e}  =  KL = 0.80(L)= 0.80(300  mm) = 240 mm

Step 3. Compute the smallest value of the radius of gyration. From Appendix A–1, for a square cross section, r b=/ \sqrt{1} 2. Then,

r =   \frac{b}{ \sqrt{12}} = \frac{12  mm}{ \sqrt{12}} = 3.46 mm

Step 4. Compute the slenderness ratio, SR = L_{e} /r:

SR =   \frac{L_{e}}{ r} = \frac{KL}{r}=\frac{(0.8)(300  mm)}{ 3.46  mm} = 69.4

Step 5. Normally, we would compute the value of the column constant, C_{c} . But, in this case, let’s use Figure 11–6. For a steel having a yield strength of 414 MPa, C_{c} = 96, approximately.

Step 6. Compare C_{c} with SR and decide if the column is long or short. Then use the appropriate column formula to compute the critical buckling load. Since SR is less than C_{c} , the Johnson formula, Equation (11–6), should be used:

P_{cr} = As_{y}[1- \frac{s_{y}(SR)^{2}}{4 \pi^{2}E} ]   (11–6)

The area of the square cross section is

A = b² = (12 mm)² = 144 mm²

Then,

P_{cr} =\left\lgroup144  mm^{2}\right\rgroup \left\lgroup\frac{414  N}{mm^{2}}\right\rgroup [1- \frac{(414 \times 10^{6}  N/m^{2})(69.4)^{2}}{4 \pi^{2}(207 \times10^{9}  N/m^{2})} ]

P_{cr} = 45.1  kN

Step 7. A design factor of N = 3 is specified.

Step 8. The allowable load, P_{a} , is

P_{a} = \frac{P_{cr}}{N} = \frac{45.1  kN}{3} = 15.0 kN

143801 11-4
143801 A-1
143801 11-6

Related Answered Questions