Question 6.10: Determine the steady state response of the two degree of fre...

Determine the steady state response of the two degree of freedom system shown in Fig. 6.11, assuming small oscillations.

fig6.11
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Assuming θ_{2} > θ_{1} and \dot{θ}_{2} > \dot{θ}_{1}, and using the free body diagram shown in the figure, one obtains the following two differential equations
m_{1}l^{2} \ddot{θ} = kl^{2}_{1}(θ2 − θ1) − m_{1}glθ_{1} + Fl sin ωft
m_{2}l^{2}\ddot{θ}_{2} = −kl^{2}_{1}(θ_{2} − θ_{1}) − m_{2}glθ_{2} + T sin ωft
which can be written in matrix form as

\begin{bmatrix}m_1l^2 & 0\\ 0& m_2l^2\end{bmatrix}\begin{bmatrix}\ddot{θ}_1\\\ddot{θ}_2\end{bmatrix}+\begin{bmatrix}kl_1^2+m_1gl &-kl_1^2\\-kl_1^2 &kl_1^2+m_2gl\end{bmatrix} \begin{bmatrix}θ_1\\θ_2\end{bmatrix} =\begin{bmatrix}Fl\\T\end{bmatrix}\sin \omega_f t

in which
m_{11} = m_{1}l^{2},\qquad  m_{22} = m_{2}l^{2},\qquad m_{12} = m_{21} = 0\\k_{11} = kl^{2}_{1}+ m_{1}gl, \qquad k_{22} = kl^{2}_{1} + m_{2}gl, \qquad k_{12} = k_{21} = −kl^{2}_{1}

F_{1} = Fl, F_{2} = T

The constants of Eq. 6.99 are then defined as
a = m_{1}m_{2}l^{4}
b = −[m_{1}l^{2}(kl^{2}_{1}+ m_{2}gl) + m_{2}l^{2}(kl^{2}_{1}+ m_{1}gl)]

= −2m_{1}m_{2}gl^{3} − (m_{1} + m_{2})kl^{2}l^{2}_{1}
c = (kl^{2}_{1} + m_{1}gl)(kl^{2}_{1}+ m_{2}gl) − k^{2}l^{4}_{1}

= m_{1}m_{2}(gl)^{2} + kl^{2}_{1}gl(m_{1} + m_{2})
In terms of these constants, the natural frequencies ω_1 \text{ and } ω_2 are given by
ω_1 = \frac{−b +\sqrt{b^2 − 4ac}}{2a}\qquad, ω_2 =\frac{−b −\sqrt{b^2 − 4ac}}{2a}
In order to obtain the steady state response, assume a solution in the form

\theta=\begin{bmatrix}\theta_1\\ \theta_2\end{bmatrix}=Θ\sin \omega_ft=\begin{bmatrix}Θ_1\\Θ_2\end{bmatrix}\sin \omega_f t

Substituting this assumed solution into the differential equations, the amplitudes Θ_{1} \text{ and } Θ_{2} can be determined using Eq. 6.110 as
Θ_1 = \frac{1}{m_1m_2l^4} \frac{F_1l[kl^2_1+ m_2gl − ω^2_f m_2l^2] + T kl^2_1}{(ω^2_f− ω^2_1)(ω^2_f− ω^2_2)}\\[0.5 cm] Θ_2 = \frac{1}{m_1m_2l^4} \frac{T[kl^2_1+ m_1gl − ω^2_f m_1l^2] +Fl kl^2_1}{(ω^2_f− ω^2_1)(ω^2_f− ω^2_2)}

Related Answered Questions

Question: 6.2

Verified Answer:

Since the spring forces balance the weights at the...