Question 13.15: A six-cylinder, four-stroke Otto cycle internal combustion e...

A six-cylinder, four-stroke Otto cycle internal combustion engine has a total displacement of 260.  in³260.  \text{ in³} and a compression ratio of 9.009.00 to 11. It is fueled with gasoline having a specific heating value of 20.0×10³ Btu/lbm20.0 × 10³  \text{Btu/lbm} and is fuel injected with a mass- ased air-fuel ratio of 16.016.0 to 11. During a dynamometer test, the intake pressure and temperature were found to be 8.00 psia8.00  \text{psia}  and 60.0°F60.0°\text{F} while the engine was producing 85.085.0 brake hp at 40004000. rpm. For the Otto cold ASC with k=1.40k = 1.40, determine the

a. Cold ASC thermal efficiency of the engine.
b. Maximum pressure and temperature of the cycle.
c. Indicated power output of the engine.
d. Mechanical efficiency of the engine.
e. Actual thermal efficiency of the engine.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. From Eq. (13.30), using k=1.40k = 1.40 for the cold ASC,

(ηT)Ottocold ASC=1CR1k=19.000.40 =0.585=58.5%(η_T)_{\substack{\text{Otto}\\\text{cold ASC}\\}} = 1 − \text{CR}^{1−k} = 1 − 9.00^{− 0.40}  = 0.585 = 58.5\%

b. From Figure 13.48a

Q˙H=Q˙fuel=(m˙cv)a(T1T4s)=m˙fuel(A/F)(cv)a(T1T4s)\dot{Q}_H = \dot{Q}_\text{fuel} = (\dot{m} c _v)_a (T_1 − T_{4s}) = \dot{m}_\text{fuel} (A/F) (c_v)_a (T_1 − T_{4s})

and

T1=Tmax=T4s+(Q˙/m˙)fuel(A/F)mass(cv)aT_1 = T_\text{max} = T_{4s} + \frac{(\dot{Q} /\dot{m})_\text{fuel}}{(A/F)_\text{mass} (c_v)_a}

Since process 33 to 4s4s is isentropic, Eq. (7.38) gives

TosT=(posp)(k1)/k=(vosv)1k=(posp)k1\frac{T_{os}}{T} = (\frac{p_{os}}{p})^{(k−1)/k} = (\frac{v_{os}}{v})^{1− k} = (\frac{p_{os}}{p})^{k−1}                    (7.38)

T4s=T3CRk1=(60.0+459.67)(9.00)0.40=1250 RT_{4s} = T_3 \text{CR}^{k-1} = (60.0 + 459.67) (9.00)^{0.40} = 1250  \text{R}

Then,

Tmax =20.0×10³  Btu/lbm fuel(16.0 lbm air/lbm fuel)[0.172  Btu/(lbm air.R)]+1250 R=8520 RT_\text{max } = \frac{20.0 × 10³  \text{ Btu/lbm fuel}}{(16.0  \text{lbm air/lbm fuel})[0.172  \text{ Btu/(lbm air.R)}]} + 1250  \text{R} = 8520  \text{R}

Since process 4s4s to 11 is isochoric, the ideal gas equation of state gives

pmax=p1=p4s(T1/T4s)p_\text{max} = p_1 = p_{4s} (T_1/T_{4s})

and, since the process 33 to 4s4s is isentropic,

T4s/T3(p4s/p3)(k1)/kT_{4s}/T_3 (p_{4s}/p_3)^{(k−1)/k}

or

p4s=p3(T4s/T3)k/(k1)=(8.00 psia)(1250 R520 R)1.40/0.40=172 psiap_{4s} = p_3 (T_{4s}/T_3)^{k/(k-1)} = (8.00  \text{psia}) (\frac{1250  \text{R}}{520  \text{R}})^{1.40/0.40} = 172  \text{psia}

then,

pmax=(172 psia)[(8520 R)/1250 R]=1170 psiap_\text{max} = (172  \text{psia}) [(8520  \text{R})/1250  \text{R}] = 1170  \text{psia}

c. Equation (13.34) gives the indicated power as

(W˙1)out=(ηT)ASC(Q˙/m˙)fuel(DNp1/C)(A/F)(RT1)(CR1)(\dot{W}_1)_\text{out} = \frac{(η_T)_\text{ASC} (\dot{Q}/\dot{m})_\text{fuel} (DNp_1/C)}{(A/F) (RT_1) (CR – 1)}               (13.34)

W˙1out=(0.585)(20.0×10³ Btu/lbm)(260.  in³/rev)(4000. rev/min)(1170 lbf /in²)/2(16.0)[0.0685 Btu/(lbm.R)](8520 R)(9.001)(12 in/ft)(60 s/min)\left|\dot{W}_1\right|_\text{out} = \frac{(0.585)(20.0 × 10³  \text{Btu/lbm})(260.  \text{ in³/rev})(4000.  \text{rev/min})(1170  \text{lbf /in²})/2}{(16.0)[0.0685  \text{Btu/(lbm.R)}](8520  \text{R})(9.00 − 1)(12  \text{in/ft})(60  \text{s/min})}

=(132,00 ft.lbf/s)(1 hp550  ft.lbf/s)=241 hp =(132,00  \text{ft.lbf/s}) (\frac{1  \text{hp}}{550  \text{ ft.lbf/s}} ) = 241  \text{hp}

d. Equation (13.33) gives the mechanical efficiency of the engine as

ηm=(W˙B)out(W˙1)out=85.0 hp241 hp=0.353=35.3%η_m = \frac{(\dot{W}_B)_\text{out}}{(\dot{W}_1)_\text{out}} = \frac{85.0  \text{hp}}{241  \text{hp}} = 0.353 = 35.3\%

e. Finally, the actual thermal efficiency of the engine can be determined from Eqs. (7.5) and (13.33) as

ηT=Net work outputTotal heat input=Engine work output − Pump work inputBoiler heat inputη_T = \frac{\text{Net work output}}{\text{Total heat input}} = \frac{\text{Engine work output − Pump work input}}{\text{Boiler heat input}}                 (7.5)

(ηT)Ottoactual=(W˙B)outQ˙fuel=(ηm)(W˙1)outQ˙fuel=(ηm)(ηT)Ottocold ASC (η_T)_{\substack{\text{Otto}\\\text{actual}\\}} = \frac{(\dot{W}_B)_\text{out}}{\dot{Q}_\text{fuel}} = \frac{(η_m)(\dot{W}_1)_\text{out}}{\dot{Q}_\text{fuel}} = (η_m) (η_T)_{\substack{\text{Otto}\\\text{cold ASC }\\}}

=(0.353)(0.585)=0.207=20.7% (0.353)(0.585) = 0.207 = 20.7\%

13.48

Related Answered Questions