Question 12.4: Compute the magnitude of the maximum longitudinal, hoop, and...
Compute the magnitude of the maximum longitudinal, hoop, and radial stresses in a cylinder carrying helium at a steady pressure of 69 MPa. The outside diameter is 200 mm and the inside diameter is 160 mm. Specify a suitable material for the cylinder.
Learn more on how we answer questions.
Objective Compute the maximum stresses and specify a material.
Given Pressure = p = 69 MPa; D_{o} = 200 mm; D_{i} = 160 mm
Analysis Use Procedure C from this section.
Results Step 1. D_{m} = (D_{o} + D_{i} )/2 = (200 + 160)/2 = 180 mm
Step 2. t = (D_{o} + D_{i} )/2 = (200 – 160)/2 = 20 mm
D_{m}/t = 180/20 = 9.0 Because D_{m}/t < 20, cylinder is thick.
Step 3. This step does not apply. Cylinder is thick.
Step 4. Use equations from Table 12–1.
TABLE 12–1 Stresses in thick-walled cylinders and spheres .^{a} | ||
Stress at position r | Maximum stress | |
Thick-walled cylinder | ||
Hoop (tangential) | \sigma_{1} = \frac{pa^{2}(b^{2}+r^{2})}{r^{2}(b^{2}-a^{2})} | \sigma_{1} = \frac{p(b^{2}+a^{2})}{b^{2}-a^{2}} (at inner surface) |
Longitudinal | \sigma_{2} = \frac{pa^{2}}{b^{2}-a^{2}} | \sigma_{2} = \frac{pa^{2}}{b^{2}-a^{2}} (uniform throughout wall) |
Radial | \sigma_{3} = \frac{-pa^{2}(b^{2}-r^{2})}{r^{2}(b^{2}-a^{2})} | \sigma_{3} = -p (at inner surface) |
Thick-walled sphere | ||
Tangential | \sigma_{1} = \sigma_{2} = \frac{pa^{3}(b^{3} + 2r^{3})}{2r^{3}(b^{3}-a^{3})} | \sigma_{1} = \sigma_{2} = \frac{p(b^{3} + 2a^{3})}{2(b^{3}-a^{3})} (at inner surface) |
Radial | \sigma_{3} = \frac{-pa^{3}(b^{3}-r^{3})}{r^{3}(b^{3}-a^{2})} | \sigma_{3} = -p (at inner surface) |
a = D_{i}/2 = 160 mm/2 = 80 mm
b = D_{o}/2 = 200 mm/2 = 100 mm
Hoop stress = \sigma_{1} = \frac{p(b^{2} + a^{2})}{b^{2} – a^{2}} = \frac{69 MPa(100^{2} + 80^{2})mm^{2}}{(100^{2} – 80^{2})mm^{2}} = 314.3 MPa
Longitudinal stress = \sigma_{2} = \frac{p a^{2}}{b^{2} – a^{2}} = \frac{69 MPa(80^{2} mm)^{2}}{(100^{2} – 80^{2})mm^{2}} = 122.7 MPa
Radial stress = \sigma_{3} = -p = -69 MPa
All three stresses are a maximum at the inner surface of the cylinder.
Step 5. Let the design stress = σ_{d} = s_{y} /4.
Step 6. The maximum stress is the hoop stress, \sigma_{1} = 314.3 MPa. Then the required yield strength for the material is
s_{y} = N( \sigma_{2}) = 4(314.3 MPa) = 1257 MPa
Step 7. From Appendix A–10, we can specify SAE 4140 OQT 700 steel that has a yield strength of 1462 MPa.
A–10 Typical properties of carbon and alloy steels .^{a} | ||||||
Ultimate | Yield | |||||
strength, s_{u} | strength, s_{y} | |||||
Material SAE no. | Condition^{b} | ksi | Mpa | ksi | Mpa | Percent elongation |
1020 | Annealed | 57 | 393 | 43 | 296 | 36 |
1020 | Hot rolled | 65 | 448 | 48 | 331 | 36 |
1020 | Cold drawn | 75 | 517 | 64 | 441 | 20 |
1040 | Annealed | 75 | 517 | 51 | 352 | 30 |
1040 | Hot rolled | 90 | 621 | 60 | 414 | 25 |
1040 | Cold drawn | 97 | 669 | 82 | 565 | 16 |
1040 | WQT 700 | 127 | 876 | 93 | 641 | 19 |
1040 | WQT 900 | 118 | 814 | 90 | 621 | 22 |
1040 | WQT 1100 | 107 | 738 | 80 | 552 | 24 |
1040 | WQT 1300 | 87 | 600 | 63 | 434 | 32 |
1080 | Annealed | 89 | 614 | 54 | 372 | 25 |
1080 | OQT 700 | 189 | 1303 | 141 | 972 | 12 |
1080 | OQT 900 | 179 | 1234 | 129 | 889 | 13 |
1080 | OQT 1100 | 145 | 1000 | 103 | 710 | 17 |
1080 | OQT 1300 | 117 | 807 | 70 | 483 | 23 |
1141 | Annealed | 87 | 600 | 51 | 352 | 26 |
1141 | Cold drawn | 112 | 772 | 95 | 655 | 14 |
1141 | OQT 700 | 193 | 1331 | 172 | 1186 | 9 |
1141 | OQT 900 | 146 | 1007 | 129 | 889 | 15 |
1141 | OQT 1100 | 116 | 800 | 97 | 669 | 20 |
1141 | OQT 1300 | 94 | 648 | 68 | 469 | 28 |
4140 | Annealed | 95 | 655 | 60 | 414 | 26 |
4140 | OQT 700 | 231 | 1593 | 212 | 1462 | 12 |
4140 | OQT 900 | 187 | 1289 | 173 | 1193 | 15 |
4140 | OQT 1100 | 147 | 1014 | 131 | 903 | 18 |
4140 | OQT 1300 | 118 | 814 | 101 | 696 | 23 |
5160 | Annealed | 105 | 724 | 40 | 276 | 17 |
5160 | OQT 700 | 263 | 1813 | 238 | 1641 | 9 |
5160 | OQT 900 | 196 | 1351 | 179 | 1234 | 12 |
5160 | OQT 1100 | 149 | 1027 | 132 | 910 | 17 |
5160 | OQT 1300 | 115 | 793 | 103 | 710 | 23 |