Question 12.5: Compute the magnitude of the maximum tangential and radial s...

Compute the magnitude of the maximum tangential and radial stresses in a sphere carrying helium at a steady pressure of 69 MPa. The outside diameter is 200 mm and the inside diameter is 160 mm. Specify a suitable material for the cylinder.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Objective   Compute the maximum stresses and specify a material.

Given         Pressure = p = 69 MPa; D_{o} = 200 mm; D_{i} = 160 mm

Analysis    Use Procedure C from this section. These data are the same as those used in Example Problem 12–4. Some values will be carried forward.

Results       Steps 1, 2, and 3. Sphere is thick walled.

Step 4. Use equations from Table 12–1. a = 80 mm; b = 100 mm

TABLE 12–1  Stresses in thick-walled cylinders and spheres .^{a}
Stress at position r Maximum stress
Thick-walled cylinder
Hoop (tangential) \sigma_{1} = \frac{pa^{2}(b^{2}+r^{2})}{r^{2}(b^{2}-a^{2})} \sigma_{1} = \frac{p(b^{2}+a^{2})}{b^{2}-a^{2}} (at inner surface)
Longitudinal \sigma_{2} = \frac{pa^{2}}{b^{2}-a^{2}} \sigma_{2} = \frac{pa^{2}}{b^{2}-a^{2}} (uniform throughout wall)
Radial \sigma_{3} = \frac{-pa^{2}(b^{2}-r^{2})}{r^{2}(b^{2}-a^{2})} \sigma_{3} = -p (at inner surface)
Thick-walled sphere
Tangential \sigma_{1} =  \sigma_{2} = \frac{pa^{3}(b^{3} + 2r^{3})}{2r^{3}(b^{3}-a^{3})} \sigma_{1} =  \sigma_{2} = \frac{p(b^{3} + 2a^{3})}{2(b^{3}-a^{3})} (at inner surface)
Radial \sigma_{3} = \frac{-pa^{3}(b^{3}-r^{3})}{r^{3}(b^{3}-a^{2})} \sigma_{3} = -p (at inner surface)

The tangential stress is equal in all directions:

\sigma_{1} =  \sigma_{2} = \frac{p(b^{3} + 2a^{3})}{2 (b^{3}-a^{3})} = \frac{(69  MPa)[100^{3}+2(80)^{3}]mm^{3}}{2(100^{3}-80^{3})mm^{3}} 

\sigma_{1} =  \sigma_{2} = 143.1 MPa tangential

The radial stress is compressive and equal to the applied internal pressure.

\sigma_{3} = =-p = -69 MPa

Each of these stresses is a maximum at the inner surface.

Steps 5 and 6. For a maximum stress of 143 MPa, the required yield strength for the mate-rial is

s_{y} =  N( \sigma_{2})  = 4(143 MPa) = 572 MPa

Step 7. From Appendix A–10, we can specify SAE 4140 OQT 1300 steel that has a yield strength of 696 MPa. Others could be used.

A–10  Typical properties of carbon and alloy steels .^{a}
Ultimate Yield
strength, s_{u} strength, s_{y}
Material SAE no. Condition^{b} ksi Mpa ksi Mpa Percent elongation
1020 Annealed 57 393 43 296 36
1020 Hot rolled 65 448 48 331 36
1020 Cold drawn 75 517 64 441 20
1040 Annealed 75 517 51 352 30
1040 Hot rolled 90 621 60 414 25
1040 Cold drawn 97 669 82 565 16
1040 WQT 700 127 876 93 641 19
1040 WQT 900 118 814 90 621 22
1040 WQT 1100 107 738 80 552 24
1040 WQT 1300 87 600 63 434 32
1080 Annealed 89 614 54 372 25
1080 OQT 700 189 1303 141 972 12
1080 OQT 900 179 1234 129 889 13
1080 OQT 1100 145 1000 103 710 17
1080 OQT 1300 117 807 70 483 23
1141 Annealed 87 600 51 352 26
1141 Cold drawn 112 772 95 655 14
1141 OQT 700 193 1331 172 1186 9
1141 OQT 900 146 1007 129 889 15
1141 OQT 1100 116 800 97 669 20
1141 OQT 1300 94 648 68 469 28
4140 Annealed 95 655 60 414 26
4140 OQT 700 231 1593 212 1462 12
4140 OQT 900 187 1289 173 1193 15
4140 OQT 1100 147 1014 131 903 18
4140 OQT 1300 118 814 101 696 23
5160 Annealed 105 724 40 276 17
5160 OQT 700 263 1813 238 1641 9
5160 OQT 900 196 1351 179 1234 12
5160 OQT 1100 149 1027 132 910 17
5160 OQT 1300 115 793 103 710 23

Comment The maximum stress in the sphere is less than half that in the cylinder of the same size, allowing a material with a much lower strength to be used. Alternatively, it would be pos-sible to design the sphere with the same material but with a smaller wall thickness.

Related Answered Questions