Question 12.16: Steam at a pressure of 20 bar and 250°C enters a turbine and...
Steam at a pressure of 20 bar and 250°C enters a turbine and leaves it finally at a pressure of 0.05 bar. Steam is bled off at pressures of 5.0, 1.5 and 0.3 bar. Assuming (i) that the condensate is heated in each heater upto the saturation temperature of the steam in that heater, (ii) that the drain water from each heater is cascaded through a trap into the next heater on the low pressure side of it, (iii) that the combined drains from the heater operating at 0.3 bar are cooled in a drain cooler to condenser temperature, calculate the following :
(i) Mass of bled steam for each heater per kg of steam entering the turbine
(ii) Thermal efficiency of the cycle,
(iii) Thermal efficiency of the Rankine cycle
(iv) Theoretical gain due to regenerative feed heating,
(v) Steam consumption in kg/kWh with or without regenerative feed heating, and
(vi) Quantity of steam passing through the last stage nozzle of a 50000 kW turbine with and without regenerative feed heating.
Learn more on how we answer questions.
Refer Fig. 12.20 (a), (b).
From Mallier Chart : h_0=2905 kJ/kg, h_1=2600 kJ/kg, h_2=2430 kJ/kg
h_3=2210 kJ/kg, h_4=2000 kJ/kg
From steam tables :
At 5 bar : h_{f_1}=640.1 kJ/kg
At 1.5 bar : h_{f_2}=467.1 kJ/kg
At 0.3 bar : h_{f_3}=289.3 kJ/kg
At 0.05 bar : h_{f_4}=137.8 kJ/kg.
(i) Mass of bled steam for each heater per kg of steam :
Using heat balance equation :
At heater No. 1 :
m_1 h_1+h_{f_2}=m_1 h_{f_1}+h_{f_1}∴ m _1=\frac{h_{f_1}-h_{f_2}}{h_1-h_{f_1}}=\frac{640.1-467.1}{2600-640.1}
= 0.088 kJ/kg of entering steam.
At heater No. 2 :
m_2 h_2+h_{f_3}+m_1 h_{f_1}=h_{f_2}+\left(m_1+m_2\right) h_{f_2}m _2=\frac{\left(h_{f_2}+h_{f_3}\right)-m_1\left(h_{f_1}-h_{f_2}\right)}{\left(h_2-h_{f_2}\right)}
=\frac{(467.1-289.3)-0.088(640.1-467.1)}{(2430-467.1)}=\frac{162.57}{1962.9}
= 0.0828 kJ/kg of entering steam.
At heater No. 3 :
m_3 h_3+h_{f_5}+\left(m_1+m_2\right) h_{f_2}=h_{f_3}+\left(m_1+m_2+m_3\right) h_{f_3} …(i)
At drain cooler :
\left(m_1+m_2+m_3\right) h_{f_3}+h_{f_4}=h_{f_5}+\left(m_1+m_2+m_3\right) h_{f_4}∴ h_{f_5}=\left(m_1+m_2+m_3\right)\left(h_{f_3}-h_{f_4}\right)+h_{f_4} …(ii)
Inserting the value of h_{f_5} in eqn. (i), we get
m_3 h_3+\left(m_1+m_2+m_3\right)\left(h_{f_3}-h_{f_4}\right)+h_{f_4}+\left(m_1+m_2\right) h_{f_2}=h_{f_3}+\left(m_1+m_2+m_3\right) h_{f_3}∴ m _3=\frac{\left(h_{f_3}-h_{f_4}\right)-\left(m_1+m_2\right)\left(h_{f_2}-h_{f_4}\right)}{h_3-h_{f_4}}
=\frac{(289.3-137.8)-(0.088+0.0828)(467.1-137.8)}{(2210-137.8)}
=\frac{151.5-56.24}{2072.2}= 0 . 0 4 6 kJ/kg of entering steam.
Work done/kg (neglecting pump work)
=\left(h_0-h_1\right)+\left(1-m_1\right)\left(h_1-h_2\right)+\left(1-m_1-m_2\right)\left(h_2-h_3\right)+\left(1-m_1-m_2-m_3\right)\left(h_3-h_4\right)= (2905 – 2600) + (1 – 0.088) (2600 – 2430) + (1 – 0.088 – 0.0828) (2430 – 2210)
+ (1 – 0.088 – 0.0828 – 0.046) (2210 – 2000)
= 305 + 155.04 + 182.42 + 164.47 = 806.93 kJ/kg
Heat supplied/kg =h_0-h_{f_1}=2905-640.1=2264.9 kJ/kg.
(ii) Thermal efficiency of the cycle, \eta_{\text {Thermal }} :
\eta_{\text {Thermal }}=\frac{\text { Work done }}{\text { Heat supplied }}=\frac{806.93}{2264.9}= 0 . 3 5 6 3 \text { or } 3 5 . 6 3 \%.
(iii) Thermal efficiency of Rankine cycle, \eta_{\text {Rankine }} :
\eta_{\text {Rankine }}=\frac{h_0-h_4}{h_0-h_{f_4}}=\frac{2905-2000}{2905-137.8}=0.327 \text { or } 32.7 \%.
(iv) Theoretical gain due to regenerative feed heating
=\frac{35.63-32.7}{35.63}=0.0822 \text { or } 8.22 \%.
(v) Steam consumption with regenerative feed heating
=\frac{1 \times 3600}{\text { Work done } / kg }=\frac{1 \times 3600}{806.93}= 4 . 4 6 kg/kWh.
Steam consumption without regenerative feed heating
=\frac{1 \times 3600}{\text { Work done } / kg \text { without regeneration }}=\frac{1 \times 3600}{h_0-h_4}= \frac{1 \times 3600}{2905-2000}= 3 . 9 7 kg/kWh.
(vi) Quantity of steam passing through the last stage of a 50000 kW turbine with regenerative feed-heating
=4.46\left(1-m_1-m_2-m_3\right) \times 50000= 4.46 (1 – 0.088 – 0.0828 – 0.046) × 50000 = 174653.6 kg/h.
Same without regenerative arrangement
= 3.97 × 50000 = 198500 kg/h.

