Question 3.9: Given that the vapor pressure of n-butane at 350 K is 9.4573...
Given that the vapor pressure of n-butane at 350 K is 9.4573 bar, find the molar volumes of (a) saturated-vapor and (b) saturated-liquid n-butane at these conditions as given by the Redlich/Kwong equation.
Learn more on how we answer questions.
Values of T_{c } and P_{c} for n-butane from App. B yield:
T_{r} = \frac{350}{425.1} = 0.8233 and P_{r} = \frac{9.4573}{37.96} = 0.2491
Parameter q is given by Eq. (3.51) with Ω, Ψ, and α(T_{r}) for the RK equation from Table 3.1:
q = \frac{\Psi \alpha (T_{r};\omega )}{\Omega T_{r} } (3.51)
Table 3.1: Parameter Assignments for Equations of State
Eqn. of State | α(T_{r}) | σ | ε | Ω | Ψ | Z_{c} |
vdW (1873) | 1 | 0 | 0 | 1/8 | 27/64 | 3/8 |
RK (1949) | T_{ r}^{-1/2} | 1 | 0 | 0.08664 | 0.42748 | 1/3 |
SRK (1972) | α_{SRK} ( T_{ r} ; ω )^{†} | 1 | 0 | 0.08664 | 0.42748 | 1/3 |
PR (1976) | α_{PR} ( T_{ r} ; ω )^{†} | 1 +\sqrt{2} | 1 – \sqrt{2} | 0.07780 | 0.45724 | 0.30740 |
†_{ α SRK }( T_{r} ; ω ) = [ 1 + (0.480 + 1.574 ω − 0.176 ω^{2} )( 1 − T_{r}^{1/2} ) ]²
‡_{ α PR} (T_{r} ;\omega ) =[1 + ( 0.37464 + 1.54226 ω − 0.26992 ω^{2} )( 1 − T_{r}^{1/2} ) ]^{ 2}q = \frac{\Psi T^{-1/2}_{r} }{\Omega T_{r} } = \frac{\Psi }{\Omega }T^{-3/2}_{r} = \frac{0.42748}{0.08664} ( 0.8233 )^{-3/2} = 6.6048
Parameter β is found from Eq. (3.50):
\beta = \Omega \frac{P_{r} }{T_{r} } = \frac{ ( 0.08664 ) ( 0.2491 )}{0.8233} = = 0.026214
(a) For the saturated vapor, we write the RK form of Eq. (3.48) that results upon substitution of appropriate values for ε and σ from Table 3.1:
Z = 1 +\beta – q\beta \frac{ Z- \beta }{(Z +εβ) (Z+ \sigma \beta )} (3.48)
Z = 1 + β − qβ\frac{(Z-\beta )}{Z(Z+\beta )}
or
Z = 1 + 0.026214 − ( 6.6048 ) ( 0.026214)V\frac{Z − 0.026214 )}{Z(Z + 0.026214)}
Solution by iteration starting from Z = 1 yields Z = 0.8305, and
V^{V} = \frac{ZRT}{P}= \frac{( 0.8305 ) ( 83.14 ) ( 350 )}{9.4573} = 2555 cm^{3}· mol^{−1}
An experimental value is 2482 cm^{3}· mol^{−1}
(b) For the saturated liquid, we apply Eq. (3.49) in its RK form:
Z = β + ( Z + εβ ) ( Z + σβ )\left(\frac{ 1+\beta -Z}{q\beta } \right) (3.49)
Z = β + Z ( Z + β )\left(\frac{1 + \beta -Z}{q\beta } \right)
or
Z = 0.026214 + Z ( Z + 0.026214 )\frac{()1.026214 − Z )}{(6.6048)(0.026214)}
Solution by iteration yields Z = 0.04331, and
V^{l} = \frac{ZRT}{P} = \frac{ ( 0.04331 ) ( 83.14 ) ( 350 )}{9.4573} = 133.3 cm^{3}· mol^{−1}
An experimental value is 115.0 cm^{3}· mol^{−1}