Question 3.9: Given that the vapor pressure of n-butane at 350 K is 9.4573...

Given that the vapor pressure of n-butane at 350 K is 9.4573 bar, find the molar volumes of (a) saturated-vapor and (b) saturated-liquid n-butane at these conditions as given by the Redlich/Kwong equation.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Values of T_{c }  and  P_{c} for n-butane from App. B yield:

T_{r} = \frac{350}{425.1} = 0.8233          and          P_{r}  = \frac{9.4573}{37.96} = 0.2491

Parameter q is given by Eq. (3.51) with Ω, Ψ, and α(T_{r}) for the RK equation from Table 3.1:

q = \frac{\Psi \alpha (T_{r};\omega )}{\Omega T_{r} }        (3.51)

Table 3.1: Parameter Assignments for Equations of State

Eqn. of State α(T_{r}) σ ε Ω Ψ Z_{c}
vdW (1873) 1 0 0 1/8 27/64 3/8
RK (1949) T_{ r}^{-1/2} 1 0 0.08664 0.42748 1/3
SRK (1972) α_{SRK} ( T_{ r} ; ω )^{†} 1 0 0.08664 0.42748 1/3
PR (1976) α_{PR} ( T_{ r} ; ω )^{†} 1 +\sqrt{2} 1  –  \sqrt{2} 0.07780 0.45724 0.30740

†_{ α  SRK }( T_{r} ; ω )  = ​​[ 1 + (0.480 + 1.574   ω  −  0.176  ω^{2} )( 1 − T_{r}^{1/2} ) ]²

‡_{ α  PR} (T_{r} ;\omega ) =[1 + ( 0.37464 + 1.54226  ω  −  0.26992  ω^{2} )( 1 − T_{r}^{1/2} ) ]^{ 2}

 q = \frac{\Psi T^{-1/2}_{r} }{\Omega T_{r} } = \frac{\Psi }{\Omega }T^{-3/2}_{r} = \frac{0.42748}{0.08664} ( 0.8233 )^{-3/2}  = 6.6048

Parameter β is found from Eq. (3.50):

\beta = \Omega \frac{P_{r} }{T_{r} } = \frac{ ( 0.08664 ) ( 0.2491 )}{0.8233} = = 0.026214

(a) For the saturated vapor, we write the RK form of Eq. (3.48) that results upon substitution of appropriate values for ε and σ from Table 3.1:

Z = 1 +\beta – q\beta \frac{ Z- \beta }{(Z +εβ) (Z+ \sigma \beta )}         (3.48)

 Z = 1 + β  − qβ\frac{(Z-\beta )}{Z(Z+\beta )}

or

 Z = 1 + 0.026214  −  ​​( 6.6048 ) ( 0.026214)V\frac{Z  −  0.026214 )}{Z(Z + 0.026214)}

Solution by iteration starting from Z = 1 yields Z = 0.8305, and

V^{V} = \frac{ZRT}{P}= \frac{( 0.8305 ) ( 83.14 ) ( 350 )}{9.4573} = 2555  cm^{3}· mol^{−1}

An experimental value is 2482  cm^{3}· mol^{−1}

(b) For the saturated liquid, we apply Eq. (3.49) in its RK form:

Z = β + ( Z + εβ ) ( Z + σβ )\left(\frac{ 1+\beta -Z}{q\beta } \right)      (3.49)

Z = β + Z ( Z + β )\left(\frac{1 + \beta -Z}{q\beta } \right)

or

 Z = 0.026214 + Z ( Z + 0.026214 )\frac{()1.026214  −  Z )}{(6.6048)(0.026214)}

Solution by iteration yields Z = 0.04331, and

V^{l} = \frac{ZRT}{P} = \frac{ ( 0.04331 ) ( 83.14 ) ( 350 )}{9.4573} = 133.3  cm^{3}· mol^{−1}

An experimental value is 115.0  cm^{3}· mol^{−1}

Related Answered Questions

Question: 3.14

Verified Answer:

(a) Apply the Rackett equation at the reduced temp...