Question 12.6: A circular hollow shaft of outer diameter 200 mm and inner d...

A circular hollow shaft of outer diameter 200 mm and inner diameter 160 mm is subjected simultaneously to a torque T = 11.1 kN m and an axial compressive load, P = 362 kN. Calculate: (a) \left(\sigma_T\right)_{\max },(b)\left(\sigma_C\right)_{\max } and (c) \tau_{\max } .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let us first compute the area properties as follows:
Cross-sectional area,

A=\frac{\pi}{4}\left(d_{ o }^2-d_{ i }^2\right)=\frac{\pi}{4}\left(200^2-160^2\right)  mm ^2=11309.73  mm ^2

Polar moment of inertia,

J=\frac{\pi}{32}\left(d_{ o }^4-d_{ i }^4\right)=\left(\frac{\pi}{32}\right)\left(200^4-160^4\right)  mm ^4=92.74 \times 10^6  mm ^4

Axial stress \left(\sigma_{x x}\right) due to P is

\sigma_{x x}=\frac{P}{A}=\frac{362\left(10^3\right)}{11309.73}  N / mm ^2=32  MPa \text { (compressive) }

or        \sigma_{x x}=-32  MPa

and shear stress \left(\tau_{x y}\right) due to T is

\tau_{x y}=\frac{T\left(d_0 / 2\right)}{J}=\frac{11.1\left(10^6\right)(200 / 2)}{92.74\left(10^6\right)} N / mm ^2=11.97  MPa

The stress states are shown in Figure 12.14 on a differential element of the shaft:

Thus, the principal stresses are

\sigma_{1,2}=\frac{\sigma_{x x}}{2} \pm \sqrt{\left\lgroup \frac{\sigma_{x x}}{2} \right\rgroup^2+\tau_{x y}^2}

=-16 \pm \sqrt{(-16)^2+11.97^2}  MPa

or        \sigma_1=-36  MPa , \quad \sigma_2=4  MPa

and the maximum shear stress is

\tau_{\max }=\sqrt{(-16)^2+11.97^2}=20  MPa

Thus,

\left(\sigma_{ T }\right)_{\max }=4  MPa , \quad\left(\sigma_{ C }\right)_{\max }=36  MPa \text { and } \tau_{\max }=20  MPa

12.14

Related Answered Questions

Question: 12.12

Verified Answer:

Let us draw the free-body diagram of the segment B...