Question 3.30: (a) Find the reflection of R3 along the direction v3= (−1, 1...

(a) Find the reflection of R³ along the direction \overrightarrow{v_{3}} =\left(-1,1,-1\right) with respect to the plane \left(2,-2,3\right)+\ll \left(0,1,0\right),\left(0,-1,1\right)\gg.

(b) Show that

T\left(\overrightarrow{x}\right)=\overrightarrow{x_{0}}+\overrightarrow{x}A,  where  \overrightarrow{x_{0}}=\left(0,-2,-4\right)  and  A = \left[\begin{matrix} 1 & 0 & 0 \\ \\  0 & \frac{5}{3} & \frac{4}{3} \\ \\  0 & -\frac{4}{3} & -\frac{5}{3} \end{matrix} \right]

is a reflection. Determine its direction and plane of invariant points.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) In the affine basis B = \left\{\left(2,-2,3\right),\left(2,-1,3\right),\left(2,-3,4\right),\left(1,-1,2\right)\right\},the required T has the representation

\left[T\left(\overrightarrow{x}\right)\right]_{B}=\left[\overrightarrow{x}\right]_{B}\left[T\right]_{B},  where \left[T\right]_{B}=\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{matrix} \right].

While, in the natural affine basis N,

T\left(\overrightarrow{x}\right)=\left(2,-2,3\right)+\left(\overrightarrow{x}-\left(2,-2,3\right)\right)P^{-1}\left[T\right]_{B}P

where

P= P^{B}_{N}=\left[\begin{matrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 1 & -1 \end{matrix} \right] \Rightarrow  P^{-1}=\left[\begin{matrix} 0 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{matrix} \right].

Therefore,

P^{-1}\left[T\right]_{B}P=\left[\begin{matrix} 0 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{matrix} \right]\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{matrix} \right]\left[\begin{matrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 1 & -1 \end{matrix} \right]

=\left[\begin{matrix} -1 & 2 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right], and

\left(2,-2,3\right)-\left(2,-2,3\right)P^{-1}\left[T\right]_{B}P=\left(2,-2,3\right)-\left(-2,2,-1\right)=\left(4,-4,4\right)

\Rightarrow T\left(\overrightarrow{x}\right)=\left(4,-4,4\right)+\overrightarrow{x}\left[\begin{matrix} -1 & 2 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] for  \overrightarrow{x} \in R^{3},  or

y_{1}=4-x_{1} ,   y_{2}=-4+2x_{1}+x_{2} ,   y_{3}=4-2x_{1}+x_{3}.

(b) Since det A = −1, it is possible that T is a reflection. To make certainty, compute the characteristic polynomial det \left(A-tI_{3}\right)=-\left(t-1\right)^{2}\left(t+1\right).

So A has eigenvalues 1, 1 and −1. Moreover,

\left(A-I_{3}\right)\left(A+I_{3}\right)=\left[\begin{matrix} 0 & 0 & 0 \\ \\  0 & \frac{2}{3} & \frac{4}{3} \\ \\  0 & -\frac{4}{3} & -\frac{8}{3} \end{matrix} \right]\left[\begin{matrix} 2 & 0 & 0 \\ \\  0 & \frac{8}{3} & \frac{4}{3} \\ \\  0 & -\frac{4}{3} & -\frac{2}{3} \end{matrix} \right]=O_{3 \times 3}

indicates that A is diagonalizable and thus, the corresponding T is a reflection if \overrightarrow{x}\left(I_{3}-A\right) =\overrightarrow{x_{0}} has a solution. Now

\overrightarrow{x}\left(I_{3}-A\right) =\overrightarrow{x_{0}}

\Rightarrow x_{2}-2x_{3}-3=0 (the plane of invariant points).

So T is really a reflection.

Take eigenvectors \overrightarrow{v_{1}}=\left(2,0,0\right)  and  \overrightarrow{v_{2}}=\left(1,2,1\right) orresponding to 1 and \overrightarrow{v_{3}}=\left(0,1,2\right) corresponding to −1. Then

\frac{1}{2}\overrightarrow{x_{0}}+\ll \overrightarrow{v_{1}},\overrightarrow{v_{2}}\gg =\left(0,-1,-2\right)+\left\{\left(2 \alpha_{1}+\alpha_{2},2\alpha_{2},\alpha_{2}\right)\mid \alpha_{1} , \alpha_{2} \in R\right\}

\Leftrightarrow \left\{\begin{matrix}x_{1}=2\alpha_{1}+\alpha_{2} \\x_{2}=-1+2\alpha_{2} \\ x_{3}=-2+\alpha_{2} ,  for  \alpha_{1},\alpha_{2} \in R\end{matrix}\right.

\Leftrightarrow x_{2}-2x_{3}-3=0

indeed is the plane of invariant points. Also, \overrightarrow{v_{3}}=-\frac{1}{2}\overrightarrow{x_{0}}  or just \overrightarrow{x_{0}} itself is the direction of T.

In the affine basis C = \left\{\overrightarrow{v_{3}},\overrightarrow{v_{3}}+\overrightarrow{v_{1}},\overrightarrow{v_{3}}+\overrightarrow{v_{2}},2\overrightarrow{v_{3}}\right\},

\left[T\left(\overrightarrow{x}\right)\right]_{C}=\left[\overrightarrow{x}\right]_{C}\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{matrix} \right].

See Fig. 3.58.

Remark The linear operator

T\left(\overrightarrow{x}\right)=\overrightarrow{x}A,  where  A =\left[\begin{matrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{matrix} \right] (3.8.14)

is a standard orthogonal reflection of R³ in the direction \overrightarrow{v_{3} } =\left( \frac{1}{\sqrt{2} },-\frac{1}{\sqrt{2} },0 \right) with respect to the plane

\ll \overrightarrow{v_{1} },\overrightarrow{v_{2} } \gg=\left\{\left(x_{1},x_{2},x_{3} \right)\in R^{3}\mid  x_{1}=x_{2}\right\}, where

\overrightarrow{v_{1} }=\left(\frac{1}{\sqrt{2} },\frac{1}{\sqrt{2} },0 \right) and \overrightarrow{v_{2} }=\overrightarrow{e_{3} }=\left(0,0,1\right).

See Fig. 3.59 and compare with Fig. 3.32 with a = b = c = 1. Notice that

A=P^{-1}\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{matrix} \right] P,   where  P = \left[\begin{matrix} \overrightarrow{v_{1} } \\ \overrightarrow{v_{2} } \\ \overrightarrow{v_{3} } \end{matrix} \right] =\left[\begin{matrix} \frac{1}{\sqrt{2} } & \frac{1}{\sqrt{2} } & 0 \\ 0 & 0 & 1 \\ \frac{1}{\sqrt{2} } & -\frac{1}{\sqrt{2} } & 0 \end{matrix} \right].

For details, refer to Case 7 below.

3
4
5

Related Answered Questions

Question: 3.37

Verified Answer:

Both S_{1}  and  S_{2} are two-dime...
Question: 3.26

Verified Answer:

Analysis The characteristic polynomial is ...