Question 7.13: Determine the input-referred noise voltage and current for t...

Determine the input-referred noise voltage and current for the amplifier shown in Fig. 7.38(a). Assume that I1I_1 is noiseless and λ = 0.

7.38
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

To compute the input-referred noise voltage, we must short the input port. In this case, we can also short the output port as shown in Fig. 7.38(b), and find the output noise current due to RF and M1.R_F  and  M_1. Since both terminals of RFR_F are at ac ground, a KVL yields

In1, out 2=4kTRF+4kTγgm \overline{I_{n 1, \text { out }}^2}=\frac{4 k T}{R_F}+4 k T \gamma g_m                 (7.63)

The output impedance of the circuit with the input shorted is simply equal to RFR_F , yielding

Vn1, out 2=(4kTRF+4kTγgm)RF2 \overline{V_{n 1, \text { out }}^2}=\left(\frac{4 k T}{R_F}+4 k T \gamma g_m\right) R_F^2                           (7.64)

We can calculate the input-referred noise voltage by dividing (7.64) by the voltage gain or by dividing (7.63) by the transconductance, Gm.G_m. Let us pursue the latter method. As depicted in Fig. 7.38(c),

Gm=Iout Vin(7.65)=gm1RF(7.66) \begin{aligned} G_m &=\frac{I_{\text {out }}}{V_{i n}} &(7.65) \\ & =g_m-\frac{1}{R_F} &(7.66) \end{aligned}

Dividing (7.63) by Gm2G^2 _m gives

Vn,in2=4kTRF+4kTγgm(gm1RF)2 \overline{V_{n, i n}^2}=\frac{\frac{4 k T}{R_F}+4 k T \gamma g_m}{\left(g_m-\frac{1}{R_F}\right)^2}                           (7.67)

For the input-referred noise current, we first compute the output noise current with the input left open [Fig. 7.38(d)]. Since Vn,RFV_{n,RF} directly modulates the gate-source voltage of M1M_1, producing a drain current of 4kTRFgm24kT R_F g^2_m, we have

In2, out 2=4kTRFgm2+4kTγgm \overline{I_{n 2, \text { out }}^2}=4 k T R_F g_m^2+4 k T \gamma g_m                                   (7.68)

Next, we must determine the current gain of the circuit according to the arrangement shown in Fig. 7.38(c). Noting that VGS=IinRF V_{G S}=I_{i n} R_F , and hence ID=gmIinRF I_D=g_m I_{i n} R_F we obtain

Iout =gmRFIinIin(7.69)=(gmRF1)Iin(7.70) \begin{aligned} I_{\text {out }} &=g_m R_F I_{i n}-I_{i n} &(7.69) \\ &=\left(g_m R_F-1\right) I_{i n} &(7.70)\end{aligned}

Dividing (7.68) by the square of the current gain yields

In,in2=4kTRFgm2+4kTγgm(gmRF1)2 \overline{I_{n, i n}^2}=\frac{4 k T R_F g_m^2+4 k T \gamma g_m}{\left(g_m R_F-1\right)^2}                           (7.71)

The reader is encouraged to repeat this analysis using the output noise voltage rather than the output noise current. The above circuit exemplifies cases where the output noise voltage is not the same for short-circuit and open-circuit input ports. The reader can prove that, if the input is left open, then

Vn2,out2=4kTγgm+4kTRF \overline{V_{n 2, o u t}^2}=\frac{4 k T \gamma}{g_m}+4 k T R_F                                                   (7.72)

Related Answered Questions

Question: 7.16

Verified Answer:

With the input signal set to zero, this circuit pr...
Question: 7.14

Verified Answer:

We construct a Thevenin model for the circuits in ...
Question: 7.12

Verified Answer:

From (7.47), the input-referred noise voltage is s...