Question 10.2: Complete the problem initiated in Example 10.1 by generating...
Complete the problem initiated in Example 10.1 by generating the final solution with forward and back substitution.
Learn more on how we answer questions.
As just stated, the intent of forward substitution is to impose the elimination manipulations that we had formerly applied to [A] on the right-hand-side vector {b}. Recall that the system being solved is
\begin{bmatrix} 3 & -0.1 & -0.2 \\ 0.1 & 7 & -0.3 \\ 0.3 & -0.2 & 10 \end{bmatrix} \begin{Bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{Bmatrix} = \begin{Bmatrix} 7.85 \\ -19.3 \\ 71.4 \end{Bmatrix}
and that the forward-elimination phase of conventional Gauss elimination resulted in
\begin{bmatrix} 3 & -0.1 & -0.2 \\ 0 & 7.00333 & -0.293333 \\ 0 & 0 & 10.0120 \end{bmatrix} \begin{Bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{Bmatrix} = \begin{Bmatrix} 7.85 \\ -19.5617 \\ 70.0843 \end{Bmatrix}
The forward-substitution phase is implemented by applying Eq. (10.8):
[L]{d} = {b} (10.8)
\begin{bmatrix} 1 & 0 & 0 \\ 0.0333333 & 1 & 0 \\ 0.100000 & -0.0271300 & 1 \end{bmatrix} \begin{Bmatrix} d_{1} \\ d_{2} \\ d_{3} \end{Bmatrix} = \begin{Bmatrix} 7.85 \\ -19.3 \\ 71.4 \end{Bmatrix}
or multiplying out the left-hand side:
d_1 = 7.85
0.0333333d_1 + d_2 = −19.3
0.100000d_1 − 0.0271300d_2 + d_3 = 71.4
We can solve the first equation for d_1 = 7.85, which can be substituted into the second equation to solve for
d_2 = −19.3 − 0.0333333(7.85)= −19.5617
Both d_1 \text{ and } d_2 can be substituted into the third equation to give
d_3 = 71.4 − 0.1(7.85) + 0.02713(−19.5617) = 70.0843
Thus,
{d} = \begin{Bmatrix} 7.85 \\ -19.5617 \\ 70.0843 \end{Bmatrix}
This result can then be substituted into Eq. (10.3), [U ]{x} = {d}:
\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & 10.0120 \end{bmatrix} \begin{Bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{Bmatrix} = \begin{Bmatrix} d_1 \\ d_2 \\ d_3 \end{Bmatrix} (10.3)
\begin{bmatrix} 3 & -0.1 & -0.2 \\ 0 & 7.00333 & -0.293333 \\ 0 & 0 & 10.0120 \end{bmatrix} \begin{Bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{Bmatrix} = \begin{Bmatrix} 7.85 \\ -19.5617 \\ 70.0843 \end{Bmatrix}
which can be solved by back substitution (see Example 9.3 for details) for the final solution:
{x} =\begin{Bmatrix} 3 \\ -2.5 \\ 7.00003 \end{Bmatrix}