Question 3.31: (a) (See Example 1(a).) Find the one-way stretch with scale ...

(a) (See Example 3.30(a).) Find the one-way stretch with scale factor k≠1 of \mathbb{R}^3  along the direction \overrightarrow{v_{3} }=\left(-1,1,-1\right) with respect to the plane \left(-1,1,1\right) + \ll \overrightarrow{v_{1} },\overrightarrow{v_{2} }\gg, where \overrightarrow{v_{1} }=\left(0,1,0\right) and \overrightarrow{v_{2} }=\left(0,-1,1\right).

(b) Show that

T\left(\overrightarrow{x }\right)=\overrightarrow{x_{0} }+\overrightarrow{x }A,  where   \overrightarrow{x_{0} }=\left(-2,4,2\right) and  A = \left[\begin{matrix} -1 & 4 & 2 \\ -1 & 3 & 1 \\ -1 & 2 & 2 \end{matrix} \right]

represents a one-way stretch. Determine its direction and its plane of invariant points.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) In the affine basis \mathcal{B} = \left\{\left(-1,1,1\right),\left(-1,2,1\right),\left(-1,0,2\right),\left(-2,2,0\right) \right\} , the one-way stretch T is

\left[T\left(\overrightarrow{x}\right)\right]_{\mathcal{B} }= \left[\overrightarrow{x}\right]_{\mathcal{B} }\left[T\right]_{\mathcal{B} },    where \left[T\right]_{\mathcal{B} }=\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{matrix} \right] .

In the natural affine basis N,

T\left(\overrightarrow{x}\right)=\left(-1,1,1\right)+\left(\overrightarrow{x}-\left(-1,1,1\right)\right)P^{-1}\left[T\right]_{\mathcal{B} }P,

where

P=P^{B}_{\mathcal{N} }=\left[\begin{matrix}0 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 1 & -1 \end{matrix} \right] \Rightarrow  P^{-1}=\left[\begin{matrix}0 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{matrix} \right] .

Hence,

P^{-1}\left[T\right]_{\mathcal{B} }P=\left[\begin{matrix}0 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{matrix} \right]\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{matrix} \right]\left[\begin{matrix}0 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 1 & -1 \end{matrix} \right]

=\left[\begin{matrix} k & 1-k & -1+k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right],

\left(-1,1,1\right)-\left(-1,1,1\right)P^{-1}\left[T\right]_{\mathcal{B} }P=\left(-1,1,1\right)-\left(-k,k,2-k\right)

=\left(-1+k,1-k,-1+k\right)

\Rightarrow T\left(\overrightarrow{x}\right)=\left(-1+k,1-k,-1+k\right)

+\overrightarrow{x} \left[\begin{matrix} k & 1-k & -1+k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right]    for  \overrightarrow{x} \in \mathbb{R}^3,  or

\left\{\begin{matrix} y_{1}=-1+k+kx_{1}, \\ y_{2}=1-k+\left(1-k\right)x_{1}+x_{2}, \\ y_{3}=-1+k+\left(-1+k\right)x_{1}+x_{3}, \end{matrix} \right.

where \overrightarrow{x} =\left(x_{1},x_{2},x_{3}\right) and \overrightarrow{y} =T\left(\overrightarrow{x}\right)=\left(y_{1},y_{2},y_{3}\right).

(b) The characteristic polynomial of A is det \left(A-tI_{3}\right)=-\left(t-1\right)^{2}\left(t-2\right).

So A has eigenvalues 1, 1 and 2. Since \left(A-I_{3}\right)\left(A-2I_{3}\right)=O_{3 \times 3} (see Example 3.11 of Sec. 3.7.6), A is diagonalizable and certainly, the corresponding T will represent a one-way stretch if \overrightarrow{x}\left(I_{3}-A\right)=\overrightarrow{x_{0}} has a solution. Solve

\overrightarrow{x}\left(I_{3}-A\right)=\overrightarrow{x_{0}}, i.e.

\left(x_{1},x_{2},x_{3}\right) \left[\begin{matrix} 2 & -4 & -2 \\ 1 & -2 & -1 \\ 1 & -2 & -1 \end{matrix} \right] =\left(-2,4,2\right)

\Rightarrow 2x_{1}+x_{2}+x_{3}=-2 does have a (in fact, infinite) solution.

Therefore, T is a one-way stretch with scale factor 2.

Note that \overrightarrow{x}\left(A-I_{3}\right)=\overrightarrow{0}\Leftrightarrow 2x_{1}+x_{2}+x_{3}=0. Take \overrightarrow{v_{1}}=\left(1,-2,0\right) and \overrightarrow{v_{2}}=\left(1,0,-2\right) as linearly independent eigenvectors corresponding to 1.

On the other hand, \overrightarrow{x}\left(A-2I_{3}\right)=\overrightarrow{0}\Leftrightarrow 3x_{1}+x_{2}+x_{3}=4x_{1}+x_{2}+2x_{3}=2x_{1}+x_{2}=0. Choose \overrightarrow{v_{3}}=\left(1,-2,-1\right) as an eigenvector corresponding to 2.

Since \overrightarrow{x_{0}}= -2\overrightarrow{v_{3}}, both \overrightarrow{x_{0}} and \overrightarrow{v_{3}} can be chosen as a direction of the one-way stretch T. To find an invariant point of T, let such a point be denoted as \alpha\overrightarrow{x_{0}}.  By the very definition of a one-way stretch along \overrightarrow{x_{0}},

\alpha\overrightarrow{x_{0}}-T\left(\overrightarrow{0}\right)=\alpha\overrightarrow{x_{0}}-\overrightarrow{x_{0}}=k\left(\alpha\overrightarrow{x_{0}}-\overrightarrow{0}\right)  with k = 2

\Rightarrow \left( since   \overrightarrow{x_{0}} \neq \overrightarrow{0}\right)\alpha-1=k\alpha  with k = 2

\Rightarrow \alpha=\frac{1}{1-k}=-1

\Rightarrow  An  invariant  point  \alpha\overrightarrow{x_{0}}=-\overrightarrow{x_{0}}=2\overrightarrow{v_{3}}

\Rightarrow  The  plane  of  invariant  point  is  2\overrightarrow{v_{3}}+\ll \overrightarrow{v_{1}},\overrightarrow{v_{2}} \gg .

Notice that

\overrightarrow{x}=\left(x_{1},x_{2},x_{3}\right) \in 2\overrightarrow{v_{3}}+\ll \overrightarrow{v_{1}},\overrightarrow{v_{2}} \gg

\Rightarrow x_{1}= 2+\alpha_{1}+\alpha_{2},x_{2}=-4-2\alpha_{1},x_{3}=-2-2\alpha_{2}  for  \alpha_{1},\alpha_{2} \in R

⇒ (by eliminating the parameters \alpha_{1} and \alpha_{2} ) 2x_{1}+x_{2}+x_{3}=-2

\Rightarrow \overrightarrow{x}\left(I_{3}-A\right)=\overrightarrow{x_{0}}

as we claimed before. In the affine basis C = \left\{2\overrightarrow{v_{3}},2\overrightarrow{v_{3}}+\overrightarrow{v_{1}},2\overrightarrow{v_{3}}+\overrightarrow{v_{2}},2\overrightarrow{v_{3}}+\overrightarrow{v_{3}}\right\},

 \left[T\left(\overrightarrow{x}\right)\right]_{C}=\left[\overrightarrow{x}\right]_{C}PAP^{-1}=\left[\overrightarrow{x}\right]_{C}\left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{matrix} \right],   where P = \left[\begin{matrix} 1 & -2 & 0 \\ 1 & 0 & -2 \\ 1 & -2 & -1 \end{matrix} \right].

See Fig. 3.62.

We propose the following questions:

Q1 Where is the image of a plane, parallel to  2x_{1}+x_{2}+x_{3} = −2, under T?

Q2 Where is the image of a plane or a line, nonparallel to 2x_{1}+x_{2}+x_{3} = −2, under T?Where do these two planes or lines intersect?

Q3 What is the image of the tetrahedron \Delta \overrightarrow{a_{0}} \overrightarrow{a_{1}} \overrightarrow{a_{2}} \overrightarrow{a_{3}} , where \overrightarrow{a_{0}}=\overrightarrow{0},\overrightarrow{a_{1}} =\left(1,0,-1\right),\overrightarrow{a_{2}}=2\overrightarrow{v_{3}}=\left(2,-4,-2\right) and \overrightarrow{a_{3}}=\left(-2,0,0\right), under T? What are the volumes of these two tetrahedra?

To answer these questions, we compute firstly that

A^{-1}=\frac{1}{2}\left[\begin{matrix} 4 & -4 & -2 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{matrix} \right].

This implies the inverse affine transformation of T is

\overrightarrow{x}=\left(T\left(\overrightarrow{x}\right)-\overrightarrow{x_{0}}\right)A^{-1}.

For Q1 A plane, parallel to 2x_{1}+x_{2}+x_{3}=-2, is of the form 2x_{1}+x_{2}+x_{3}=c which intercepts x_{1}-axis at the point \left(\frac{c}{2},0,0\right). Since 2x_{1}+x_{2}+x_{3}=-2 is the plane of invariant points of T, with scale factor 2, so the image plane (refer to Fig. 3.62) is

2x_{1}+x_{2}+x_{3}=-2+2 \left(c- \left(-2\right)\right)=2 \left(c+1\right),

where c is any constant.
We can prove this analytically as follows.

2x_{1}+x_{2}+x_{3}=\overrightarrow{x}\left[\begin{matrix} 2 \\ 1 \\ 1 \end{matrix} \right] =c

⇒ (let \overrightarrow{y}=T \left(\overrightarrow{x}\right)= \left(y_{1},y_{2},y_{3}\right) temporarily)

\left[\left(y_{1},y_{2},y_{3}\right)-\left(-2,4,2\right)\right]A^{-1}\left[\begin{matrix} 2 \\ 1 \\ 1 \end{matrix} \right] =c

⇒ ( since A^{-1}\overrightarrow{y^{*}_{0} }=\frac{1}{2}\overrightarrow{y^{*}_{0} }   for  \overrightarrow{y_{0}}=\left(2,1,1\right),  see  Note  below )

\left[\left(y_{1},y_{2},y_{3}\right)-\left(-2,4,2\right)\right]A^{-1}\left[\begin{matrix} 2 \\ 1 \\ 1 \end{matrix} \right] =2c

\Rightarrow 2y_{1}+y_{2}+y_{3}-\left(-4+4+2\right)=2c

⇒ (change y_{1},y_{2},y_{3}  back to x_{1},x_{2},x_{3} respectively)

2x_{1}+x_{2}+x_{3}=2\left(c+1\right)

as claimed above. Therefore, such a plane has its image a plane parallel to itself and, of course, to 2x_{1}+x_{2}+x_{3}=-2.

Note It is well-known that Ker \left(A-I_{3}\right)^{\bot} =Im \left(A^{*}-I_{3}\right) (see (3.7.32) and Ex. <A> 5 of Sec. 3.7.3). Since Ker \left(A-I_{3}\right)^{\bot} =\ll \left(2,1,1\right)\gg, so Im \left(A^{*}-I_{3}\right) =\ll \left(2,1,1\right)\gg holds. Since \left(A^{*}-I_{3}\right)\left(A^{*}-2I_{3}\right)=O_{3 \times 3},  so  \overrightarrow{y_{0}} \left(A^{*}-2I_{3}\right)=\overrightarrow{0} where  \overrightarrow{y_{0}}=\left(2,1,1\right). Therefore

\overrightarrow{y_{0}}A^{*}=2\overrightarrow{y_{0}}

\Rightarrow A \overrightarrow{y^{*}_{0} } =2\overrightarrow{y^{*}_{0} }

\Rightarrow A^{-1} \overrightarrow{y^{*}_{0} } =\frac{1}{2} \overrightarrow{y^{*}}

which can also be easily shown by direct computation.

For Q2 Take, for simplicity, the plane x_{1}-x_{2}-x_{3}=5. To find the image plane of this plane under T, observe that

x_{1}-x_{2}-x_{3}= \left(x_{1},x_{2},x_{3}\right) \left[\begin{matrix} 1 \\ -1 \\ -1 \end{matrix} \right] =5

⇒ (let \overrightarrow{y } = T\left( \overrightarrow{x } \right) temporarily) \left[\left(y_{1},y_{2},y_{3}\right)-\left(-2,4,2\right)\right] A^{-1}\left[\begin{matrix} 1 \\ -1 \\ -1 \end{matrix} \right] =5

\Rightarrow \left(y_{1}+2,y_{2}-4,y_{3}-2\right)\left[\begin{matrix} 5 \\ 1 \\ 1 \end{matrix} \right] =5\left(y_{1}+2\right)+y_{2}-4+y_{3}-2=5

⇒ (replace y_{1},y_{2},y_{3} by x_{1},x_{2},x ) 5x_{1}+x_{2}+x_{3} =1

which is the equation of the image plane.

The two planes x_{1}-x_{2}-x_{3}=5   and   5x_{1}+x_{2}+x_{3} =1 do intersect along the line x_{1}=1,x_{2}+x_{3}=-4 which obviously lies on the plane 2x_{1}+x_{2}+x_{3} =-2. Refer to Fig. 3.61.

For Q3 By computation,

T\left(\overrightarrow{a_{0}}\right)=T\left(\overrightarrow{0}\right) = \overrightarrow{x_{0}}=\left(-2,4,2\right),

T\left(\overrightarrow{a_{1}}\right)=\left(-2,4,2\right)+\left(1,0,-1\right)A=\left(-2,4,2\right)+\left(0,2,0\right)=\left(-2,6,2\right),

T\left(\overrightarrow{a_{2}}\right)=\left(-2,4,2\right)+\left(2,-4,-2\right)A=\left(-2,4,2\right)+\left(4,-8,-4\right)=\left(2,-4,-2\right),

T\left(\overrightarrow{a_{3}}\right)=\left(-2,4,2\right)+\left(-2,0,0\right)A=\left(-2,4,2\right)+\left(2,-8,-4\right)=\left(0,-4,-2\right).

These four points form a tetrahedron \Delta T\left(\overrightarrow{a_{0}}\right)T\left(\overrightarrow{a_{1}}\right)T\left(\overrightarrow{a_{2}}\right)T\left(\overrightarrow{a_{3}}\right) whose volume is equal to

det \left[\begin{matrix} T\left(\overrightarrow{a_{1}}\right)-T\left(\overrightarrow{a_{0}}\right) \\T\left(\overrightarrow{a_{2}}\right)-T\left(\overrightarrow{a_{0}}\right) \\ T\left(\overrightarrow{a_{3}}\right)-T\left(\overrightarrow{a_{0}}\right) \end{matrix} \right]= \left|\begin{matrix} 0 & 2 & 0 \\ 4 & -8 & -4 \\ 2 & -8 & -4 \end{matrix} \right| =16.

While \Delta \overrightarrow{a_{0}}\overrightarrow{a_{1}}\overrightarrow{a_{2}}\overrightarrow{a_{3}} has volume equal to

det \left[\begin{matrix} \overrightarrow{a_{1}}\\\overrightarrow{a_{2}} \\ \overrightarrow{a_{3}} \end{matrix} \right]=\left|\begin{matrix} 1 & 0 & -1 \\ 2 & -4 & -2 \\ -2 & 0 & 0 \end{matrix} \right| =8.

Therefore,

\frac{Volume  of  \Delta T\left(\overrightarrow{a_{0}}\right) \ldots  T\left(\overrightarrow{a_{3}}\right) }{Volume  of  \Delta \overrightarrow{a_{0}} \ldots  \overrightarrow{a_{3}}} =\frac{16}{8}=2=detA.

See Fig. 3.63.

8
7
9

Related Answered Questions

Question: 3.37

Verified Answer:

Both S_{1}  and  S_{2} are two-dime...
Question: 3.26

Verified Answer:

Analysis The characteristic polynomial is ...