Question 14.3: Locate the shear centre of the section shown in Figure 14.23...
Locate the shear centre of the section shown in Figure 14.23 and analyse shear stresses and shear forces in different segments of the section due to the shear load, V_y .

Learn more on how we answer questions.
First we determine \bar{I}_{z z} of the section as follows:
\bar{I}_{z z}=2\left(\bar{I}_{ AB }+\bar{I}_{ BD }\right)_{z z}+\left(\bar{I}_{ DE }\right)_{z z}
since the section is symmetric with respect to z-axis. So,
\bar{I}_{z z}=2\left[\frac{1}{12} b_1^3 t+\left(b_1 t\right)\left\lgroup \frac{b_1+b_3}{2} \right\rgroup^2+\left(b_2 t\right)\left\lgroup \frac{b_3}{2} \right\rgroup^2\right]+\frac{1}{12} b_3^3 t
or \bar{I}_{z z}=\frac{t}{12}\left[b_3^2\left(b_3+6 b_2+6 b_1\right)+4 b_1^2\left(2 b_1+3 b_3\right)\right] (1)
Next, we determine the shear stress distribution as follows:
(a) Leg AB (refer Figure 14.24)
\left|\left(\tau_{x y}\right)_{ AB }\right|=\left|\frac{V_y Q_z}{t \bar{I}_{z z}}\right|
where
Q_z=(s t)\left\lgroup \frac{b_3}{2}+b_1-\frac{s}{2} \right\rgroup
Therefore,
\left|\left(\tau_{x y}\right)_{ AB }\right|=\left|\frac{V_y s}{\bar{I}_{z z}}\left\lgroup (b_1+\frac{b_3}{2}-\frac{s}{2} \right\rgroup\right| ; \quad 0 \leq s \leq b_1 (2)
(b) Leg BD (refer Figure 14.25)
\left|\left(\tau_{x z}\right)_{ BD }\right|=\left|\frac{V_y Q_z}{t \bar{I}_{z z}}\right|
where
Q_z=(s t)\left\lgroup \frac{b_3}{2} \right\rgroup+\left(b_1 t\right) \frac{1}{2}\left(b_1+b_3\right)
Therefore,
\left|\left(\tau_{x z}\right)_{ BD }\right|=\left|\frac{V_y}{2 \bar{I}_{z z}}\left[b_1\left(b_1+b_3\right)+s b_3\right]\right| ; \quad 0 \leq s \leq b_2 (3)
(c) Leg DE (refer Figure 14.26)
\left|\left(\tau_{x y}\right)_{ DE }\right|=\left|\frac{V_y Q_z}{t \bar{I}_{z z}}\right|
where
Q_z=\left(b_1 t\right) \frac{1}{2}\left(b_1+b_3\right)+\left(b_2 t\right) \frac{b_2}{2}+(s t) \frac{1}{2}\left(b_3-s\right)
Therefore,
\left|\left(\tau_{x y}\right)_{ DE }\right|=\left|\left\lgroup \frac{V_y}{2 \bar{I}_{z z}} \right\rgroup\left[b_1\left(b_1+b_3\right)+b_2 b_3+s b_3-s^2\right]\right| (4)
(d) Leg EF
\left|\left(\tau_{x z}\right)_{ EF }\right|=\left|\left(\tau_{x z}\right)_{ BD }\right|
(e) Leg FG
\left|\left(\tau_{x y}\right)_{ FG }\right|=\left|\left(\tau_{x y}\right)_{ AB }\right|
The above shear stress distributions can be shown in Figure 14.27(a):
Now, we can find shear forces in different legs of the section shown in Figure 14.27(b) as follows:
From Eqs. (2)–(4), on integration, we get
F_1=\int_0^{b_1}\left(\tau_{x y}\right)_{ AB } t d s=\left\lgroup \frac{V_y t}{\bar{I}_{z z}} \right\rgroup \int_0^{b_1}\left[\left\lgroup b_1+\frac{b_3}{2} \right\rgroup s-\frac{s^2}{2}\right] d s
=\left\lgroup \frac{V_y t}{\bar{I}_{z z}} \right\rgroup\left[\frac{b_1^2}{2}\left(b_1+\frac{b_3}{2}\right)-\frac{b_1^3}{6}\right]
=\frac{V_y t b_1^2}{2 \bar{I}_{z z}}\left[b_1+\frac{b_3}{2}-\frac{b_1}{2}\right]=\frac{V_y t b_1^2}{2 \bar{I}_{z z}}\left\lgroup \frac{2}{3} b_1+\frac{b_3}{2} \right\rgroup
or F_1=\frac{V_y b_1^2 t}{12 \bar{I}_{z z}}\left(4 b_1+3 b_3\right) (5)
Similarly,
F_2=\frac{V_y t}{2 \bar{I}_{z z}} \int_0^{b_2}\left[s b_3+b_1\left(b_1+b_3\right)\right] d s
or F_2=\frac{V_y t}{2 \bar{I}_{z z}}\left[\frac{b_2^2 b_3}{2}+b_1 b_2\left(b_1+b_3\right)\right] (6)
and
F_3=\left\lgroup \frac{V_y t}{2 \bar{I}_{z z}} \right\rgroup\left\{\left[b_1\left(b_1+b_3\right)+b_2 b_3\right] b_3+\frac{b_3^3}{2}-\frac{b_3^3}{3}\right\}
or F_3=\left\lgroup \frac{V_y t}{2 \bar{I}_{z z}} \right\rgroup\left\{\left[b_1\left(b_1+b_3\right)+b_2 b_3\right] b_3+\frac{b_3^3}{6}\right\} (7)
We note from Eqs. (5) and (7),
2 F_1+F_3=\frac{V_y b_1^2 t}{6 \bar{I}_{z z}}\left(4 b_1+3 b_3\right)+\frac{V_y t}{2 \bar{I}_{z z}}\left[\frac{b_3^3}{6}+b_3\left(b_1^2+b_1 b_3+b_2 b_3\right)\right]
=\frac{V_y t}{6 \bar{I}_{z z}}\left[4 b_1^3+3 b_1^2 b_3 \frac{b_3^3}{2}+3 b_3\left(b_1^2+b_1 b_3+b_2 b_3\right)\right]
=\frac{V_y t}{12 \bar{I}_{z z}}\left[8 b_1^3+6 b_1^2 b_3+b_3^3+6 b_3\left(b_1^2+b_1 b_3+b_2 b_3\right)\right]
=\frac{V_y t}{12 \bar{I}_{z z}}\left[4 b_1^2\left(2 b_1+3 b_3\right)+b_3^2\left(b_3+6 b_1+6 b_2\right)\right]
Thus, 2 F_1+F_3=V_y from Eq. (1) above, and this is expected from equilibrium. Thus, we show in Figure 14.27(c) above the resultant force diagram, where resultant force V_y passes through S. Clearly, from Varignon’s theorem of moments
V_y e=b_3 F_2-2 b_2 F_1
From Eqs. (5) and (6),
V_y e=\frac{V_y t}{2 \bar{I}_{z z}}\left[\frac{b_2^2 b_3^2}{2}+b_1 b_2 b_3\left(b_1+b_3\right)\right]-\frac{V_y b_1^2 b_2 t}{6 \bar{I}_{z z}}\left(4 b_1+3 b_3\right)
Therefore,
e=\frac{t}{6 \bar{I}_{z z}}\left[\frac{3 b_2^2 b_3^2}{2}+3 b_1 b_2 b_3\left(b_1+b_3\right)-4 b_1^3 b_2-3 b_1^2 b_2 b_3\right]
=\frac{t}{12 \bar{I}_{z z}}\left[3 b_2^2 b_3^2+6 b_1^2 b_2 b_3+6 b_1 b_2 b_3^2-8 b_1^3 b_2-6 b_1^2 b_2 b_3\right]
or e=\frac{3 b_2 b_3^2\left(b_2+2 b_1\right)-8 b_1^3 b_2}{4 b_1^2\left(2 b_1+3 b_3\right)+b_3^2\left(6 b_1+6 b_2+b_3\right)}
Note: Compare the above result with that of Problem 14.1.



