Question 2.48: An engine working on Carnot cycle absorbs Q1 units of heat f...

An engine working on Carnot cycle absorbs Q_1 units of heat from a source at T_1 and rejects Q_2 units of heat to a sink at T_2 . The temperature of the working fluid is \theta_1 and \theta_2 , where \theta_1<T_1 and \theta_2>T_2.

If \theta_1=T_1-k Q_1 \text { and } \theta_2=T_2+k Q_2

where k is constant, then show that efficiency of the engine is given by :

\eta=1-\frac{T_2}{T_1-2 k Q_1}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\eta=1-\frac{Q_2}{Q_1}=1-\frac{\theta_2}{\theta_1}

or        \quad \frac{Q_2}{Q_1}=\frac{\theta_2}{\theta_1}

Also           \left\lgroup \frac{\theta_2-T_2}{T_1-\theta_1}\right\rgroup=\frac{Q_2}{Q_1}  (given)

\begin{aligned}\left\lgroup \frac{\theta_2-T_2}{T_1-\theta_1}\right\rgroup &=\frac{\theta_2}{\theta_1} \\ \\\theta_1 \theta_2-\theta_1 T_2 &=\theta_2 T_1-\theta_1 \theta_2 \\ \\\theta_2\left(2 \theta_1-T_1\right) &=\theta_1 T_2\end{aligned}

\begin{aligned}\theta_2 &=\left\lgroup \frac{\theta_1 T_2}{2 \theta_1-T_1}\right\rgroup=\frac{\theta_1 T_2}{2\left(T_1-k Q_1\right)-T_1} \\ \\&=\frac{\theta_1 T_2}{T_1-2 k Q_1}\end{aligned}

\therefore \quad \eta=1-\frac{T_2}{T_1-2 k Q_1}

Hence Proved.

Related Answered Questions