Question 14.10: Locate the shear centre of the thin-walled section shown bel...
Locate the shear centre of the thin-walled section shown below in Figure 14.43(a) whose thickness is uniform throughout.

Learn more on how we answer questions.
From Figure 14.43(b) shown above, as the section is symmetric about the z-axis, we can say that
\bar{I}_{z z}=2 \int_0^\alpha\left(R^2 \sin ^2 \theta\right)(R t) d \theta
=\left(R^3 t\right) \int_0^\alpha(1-\cos 2 \theta) d \theta
or \bar{I}_{z z}=R^3 t\left\lgroup \alpha-\frac{\sin 2 \alpha}{2} \right\rgroup (1)
We then determine the shear stress distribution throughout the section by referring to Figure 14.44.
Clearly, \tau_{x \phi}=V_y Q_z / t \bar{I}_{z z} \text { where } Q_z is the first moment about z-axis of the shaded area as shown in Figure 14.44. Thus,
Q_z=\int_{\alpha-\phi}^\alpha(R \sin \theta)(R t) d \theta
or Q_z=\left(R^2 t\right)(-\theta)_{\alpha-\phi}^\alpha=R^2 t[\cos (\alpha-\phi)-\cos \alpha] (2)
and so
\tau_{x \phi}=\left\lgroup \frac{V_y}{\bar{I}_{z z}} \right\rgroup R^2[\cos (\alpha-\phi)-\cos \alpha] ; \quad 0 \leq \phi \leq \alpha (3)
Taking moment with respect to O of the shear force developed on the beam section, we obtain from Eq. (3)
M_{ O }=\iint_A d M_{ O }=\int_0^{2 \alpha} R \tau_{x \phi}(R d \phi) t=2 \int_0^\alpha\left(R^2 t\right) \tau_{x \phi} d \phi
=2 \int_0^\alpha\left(R^2 t\right)\left\lgroup \frac{R^2 V_y}{\bar{I}_{z z}} \right\rgroup [\cos (\alpha-\phi)-\cos \alpha] d \phi
=2\left\lgroup \frac{R^4 V_y t}{\bar{I}_{z z}} \right\rgroup \int_0^\alpha[\cos (\alpha-\phi)-\cos \alpha] d \phi
=2\left\lgroup \frac{R^4 t V_y}{\bar{I}_{z z}} \right\rgroup [-\sin (\alpha-\phi)-\phi \cos \alpha]_0^\alpha
=2\left\lgroup \frac{R^4 t V_y}{\bar{I}_{z z}} \right\rgroup [\sin \alpha-\alpha \cos \alpha]
From Varignon’s theorem of moments, we get
M_{ O }=V_y \cdot eFrom Eq. (1)
e=\frac{2 R^4 t}{R^3 t} \frac{(\sin \alpha-\alpha \cos \alpha)}{(2 \alpha-\sin 2 \alpha) / 2}
=4 R \frac{\sin \alpha-\alpha \cos \alpha}{2 \alpha-\sin \alpha}
or e=2 R \frac{\sin \alpha-\alpha \cos \alpha}{\alpha-\sin \alpha \cos \alpha}
