Question : (a) Choose sinθ and cosθ to triangularize A, and find R: Giv...

(a) Choose \sin {\theta} and \cos {\theta} to triangularize A, and find R:

Givens rotation \quad {Q}_{21} A =\begin{bmatrix} \cos { \theta } & -\sin { \theta } \\ \sin {\theta } & \cos { \theta } \end{bmatrix}\begin{bmatrix} 1 & -1 \\ 3 & 5 \end{bmatrix}=\begin{bmatrix} * & * \\ 0 & * \end{bmatrix}=R.

(b) Choose \sin {\theta} and \cos {\theta} to make QA{Q}^{-1} triangular. What are the eigenvalues?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) \cos {\theta} = 1/\sqrt{10},

\sin {\theta} = -3/\sqrt{10},

R=\frac{1}{\sqrt{10}}\begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}\begin{bmatrix} 1 & -1 \\ 3 & 5 \end{bmatrix}=\frac{1}{\sqrt{10}}\begin{bmatrix} 10 & 14 \\ 0 & 8 \end{bmatrix}.

(b) A has eigenvalues 4 and 2. Put one of the unit eigenvectors in row 1 of Q:

either Q = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} and QA{Q}^{-1} =\begin{bmatrix} 2 & -4 \\ 0 & 4 \end{bmatrix}

or Q =\frac{1}{\sqrt{10}}\begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix} and QA{Q}^{-1} =\begin{bmatrix} 4 & -4 \\ 0 & 2 \end{bmatrix}