Question 2.14: A horizontal force 1 kN is applied at the end of a cantileve...
A horizontal force 1 kN is applied at the end of a cantilever bent of diameter 40 mm as shown in Fig. 2.22. Determine maximum principal normal stresses 200 mm above the base.

Learn more on how we answer questions.
The maximum stress will occur at a point P on the circumference as shown in Fig. 2.23. Consider free body diagram of a small element at point P, Normal stress due to bending,
\sigma_y =\frac{M \times y}{I}=\frac{(1000 \times 300) \times 20}{\pi \times 40^4 / 64} = 47.75 MPa
Shear stress due to torsion,
\tau_{y x}=\frac{T \times y}{J}=\frac{5 \times 10^5 \times 20}{\pi \times 40^4 / 32}=39.79 MPaPrincipal stresses,
\sigma_{x^{\prime},{max}/{min} }=\frac{47.75}{2}+\sqrt{(47.75 / 2)^2+39.79^2} = 70.28 MPa , -22.53 MPa
2 \theta_p=\tan ^{-1} \frac{-\tau_{x y}}{\left(\sigma_x-\sigma_y\right) / 2}=\tan ^{-1} \frac{-39.79}{47.75 / 2}=-59^{\circ}The orientation of principal stresses is shown in Fig. 2.23, which can be verified by Eq. (2.1) or by Mohr’s circle.
\sigma _{x^{\prime}}=\frac{\sigma _x+\sigma _y}{2}+\frac{\sigma _x-\sigma _y}{2}\cos 2\theta -\tau _{xy}\sin 2 \theta (2.1b)
