Question 3.33: Let a0^→ = (1, 1, 0),a1^→ = (2, 0,−1) and a2^→ = (0,−1, 1). ...

Let \overrightarrow{a_{0} }=\left(1,1,0\right), \overrightarrow{a_{1} }=\left(2,0,-1\right)   and   \overrightarrow{a_{2} }=\left(0,-1,1\right). Try to construct a shearing with coefficient k ≠ 0 in the direction \overrightarrow{a_{1} }-\overrightarrow{a_{0} } with \overrightarrow{a_{0} } +\ll \overrightarrow{a_{2 }}-\overrightarrow{a_{0} }\gg ^{\bot } as the plane of invariant points. Note that \left(\overrightarrow{a_{1} }-\overrightarrow{a_{0} }\right) \bot \left(\overrightarrow{a_{2} }-\overrightarrow{a_{0} }\right) .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Since \overrightarrow{a_{1} }-\overrightarrow{a_{0} }=\left(1,-1,-1\right) has length \sqrt{3},  take the unit vector \overrightarrow{v_{1} }= \frac{1}{\sqrt{3}} \left(1,-1,-1\right). Since \overrightarrow{a_{2} }-\overrightarrow{a_{0} }=\left(-1,-2,1\right) happens to be perpendicular to \overrightarrow{a_{1} }-\overrightarrow{a_{0} }, i.e.

\left(\overrightarrow{a_{2} }-\overrightarrow{a_{0} }\right)\left(\overrightarrow{a_{1} }-\overrightarrow{a_{0} }\right)^{*}=\left(-1    -2    1\right) \left[\begin{matrix} 1 \\ -1 \\ -1 \end{matrix} \right] =-1+2-1=0,

so we can choose \overrightarrow{v_{2} } to be equal to \overrightarrow{a_{2} }-\overrightarrow{a_{0} } dividing by its length \sqrt{6}, i.e. \overrightarrow{v_{2} }=\frac{1}{\sqrt{6}} \left(-1,-2,1\right). Then, choose a vector \overrightarrow{v_{3} }=\left(\alpha _{1} ,\alpha _{2} ,\alpha _{3} \right) of unit length so that

\overrightarrow{v_{3} } \bot  \overrightarrow{v_{1} }  and  \overrightarrow{v_{3} } \bot  \overrightarrow{v_{2} }

\Rightarrow \alpha _{1} -\alpha _{2} -\alpha _{3} =0  and  -\alpha _{1} -2\alpha _{2} +\alpha _{3}=0

\Rightarrow \alpha _{1}=\alpha _{3}  and   \alpha _{2}=0

\Rightarrow \overrightarrow{v_{3} }= \frac{1}{\sqrt{2}} \left(1,0,1\right).

In the orthonormal affine basis B = \left\{\overrightarrow{a_{0} },\overrightarrow{a_{0} }+\overrightarrow{v_{1} },\overrightarrow{a_{0} }+\overrightarrow{v_{2} },\overrightarrow{a_{0} }+\overrightarrow{v_{3} }\right\}, the required shearing T has the representation

\left[T\left(\overrightarrow{x} \right) \right]_{B}=\left[\overrightarrow{x}  \right]_{B}\left[T\right]_{B},  where  \left[T\right]_{B}= \left[\begin{matrix} 1 & 0 & 0 \\ k & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right], simply denoted as A.

While in N = \left\{\overrightarrow{0},\overrightarrow{e_{1} },\overrightarrow{e_{2} },\overrightarrow{e_{3} }\right\},

T\left(\overrightarrow{x} \right)=\overrightarrow{a_{0} }+\left(\overrightarrow{x}-\overrightarrow{a_{0} }\right)P^{-1}AP,

where

P = \left[\begin{matrix} \overrightarrow{v_{1} } \\  \overrightarrow{v_{2} } \\ \overrightarrow{v_{3} } \end{matrix} \right]= \left[\begin{matrix} \frac{1}{\sqrt{3} } & -\frac{1}{\sqrt{3} } & -\frac{1}{\sqrt{3} } \\ \\  -\frac{1}{\sqrt{6} } & -\frac{2}{\sqrt{6} } & \frac{1}{\sqrt{6} } \\ \\ \frac{1}{\sqrt{2} } & 0 & \frac{1}{\sqrt{2} } \end{matrix} \right]  with P^{-1}=P^{*}.

By computation,

P^{-1}AP= \left[\begin{matrix} 1-\frac{k}{3\sqrt{2} } &\frac{k}{3\sqrt{2} } & \frac{k}{3\sqrt{2} } \\ \\  \frac{-2k}{3\sqrt{2} } & 1+\frac{2k}{3\sqrt{2} } &\frac{2k}{3\sqrt{2} } \\ \\  \frac{k}{3\sqrt{2} } & \frac{-k}{3\sqrt{2} } & 1-\frac{k}{3\sqrt{2} } \end{matrix} \right] , and

\overrightarrow{x_{0} }=\overrightarrow{a_{0} }-\overrightarrow{a_{0} }P^{-1}AP=\overrightarrow{a_{0} }P^{-1}\left(I_{3}-A\right)P=\frac{k}{\sqrt{2} }\left(1,-1,-1\right)

\Rightarrow T\left(\overrightarrow{x} \right)=\overrightarrow{x_{0} }+\overrightarrow{x} P^{-1}AP.

See Fig. 3.68.

For simplicity, take k = \sqrt{2} and consider the converse problem. Let

T\left(\overrightarrow{x} \right)=\overrightarrow{x_{0} }+\overrightarrow{x}B ,  where \overrightarrow{x_{0} }=\left(1,-1,-1\right)  and

B=P^{-1}AP= \left[\begin{matrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \\  -\frac{2}{3} & \frac{5}{3} & \frac{2}{3} \\ \\  \frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{matrix} \right] .

We want to check if this T is a shearing. Follow the steps in (3.8.22).

1. B has characteristic polynomial

det \left(B-tI_{3}\right)=\frac{1}{27}\left(-27t^{3}+81t^{2}-81t+27\right)=-\left(t-1\right)^{3}.

So B has eigenvalue 1 of algebraic multiplicity 3. Furthermore, B-I_{3} \neq O but

\left(B-I_{3}\right)^{2}= \left[\begin{matrix} -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \\  -\frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ \\  \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \end{matrix} \right]^{2}=O_{3 \times 3}.

Hence B is not diagonalizable. Solve

\overrightarrow{x} \left(I_{3}-B\right)=\overrightarrow{x_{0} }=\left(1,-1,-1\right), where \overrightarrow{x}=\left(x_{1},x_{2},x_{3}\right)

 \Rightarrow x_{1}+2x_{2}-x_{3}=3  has infinitely many solutions.

Pick any such a solution, say  \overrightarrow{a_{0} } = (1, 1, 0). These information guarantee that T is a shearing.
2. Solve

\overrightarrow{x}\left(B-I_{3}\right)=\overrightarrow{0}

\Rightarrow x_{1}+2x_{2}-x_{3}=0.

Pick up two orthogonal eigenvectors of unit length, say \overrightarrow{v_{1} }=\frac{1}{\sqrt{3} } \left(1,-1,-1\right)  and  \overrightarrow{v_{3} }=\frac{1}{\sqrt{2} } \left(1,0,1\right).

3. To choose a unit vector \overrightarrow{v_{2} }= \left(\alpha _{1},\alpha _{2},\alpha _{3}\right) so that \overrightarrow{v_{2} }\bot \overrightarrow{v_{1} }  and   \overrightarrow{v_{2} }\bot \overrightarrow{v_{3} } hold, solve

\alpha _{1}-\alpha _{2}-\alpha _{3}=\alpha _{1}+\alpha _{3}=0 \Rightarrow \left(\alpha _{1},\alpha _{2},\alpha _{3}\right) = \alpha _{1} \left(1,2,-1\right).

Take \overrightarrow{v_{2} }=\frac{1}{\sqrt{6} } \left(1,2,-1\right). Notice that this \overrightarrow{v_{2} } is not an eigenvector associated to 1 since dim Ker\left(B-I_{3}\right)=2. By computation,

\overrightarrow{v_{2} }B=\frac{1}{\sqrt{6} } \left(1,2,-1\right)\left[\begin{matrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \\  -\frac{2}{3} & \frac{5}{3} & \frac{2}{3} \\ \\  \frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{matrix} \right] =\frac{1}{\sqrt{6} } \left(-1,4,1\right)

\Rightarrow \overrightarrow{v_{2} }B-\overrightarrow{v_{2} }=\frac{2}{\sqrt{6} } \left(-1,1,1\right)=-\sqrt{2}\overrightarrow{v_{1} }.

Therefore, −\sqrt{2} is the coefficient.

Hence, in C = \left\{\overrightarrow{a_{0} },\overrightarrow{a_{0} }+\overrightarrow{v_{1} },\overrightarrow{a_{0} }+\overrightarrow{v_{2} },\overrightarrow{a_{0} }+\overrightarrow{v_{3} }\right\} ,

\left[T\left(\overrightarrow{x} \right) \right]_{C}=\left[\overrightarrow{x}  \right]_{C}\left[T\right]_{C},  where  \left[T\right]_{C}= \left[\begin{matrix} 1 & 0 & 0 \\−\sqrt{2} & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right].

Notice that the \overrightarrow{v_{2} } in C is equal to – \overrightarrow{v_{2} } in B metioned above. This is the reason why we have −\sqrt{2} here instead of the original \sqrt{2} (see 2 in (3.8.20)).
Two questions are raised as follows.

Q1 What is the image plane of the plane x_{1}+x_{2}=0 under T? Where do they intersect?

Q2 Where is the image of the tetrahedron \Delta \overrightarrow{b_{0} }\overrightarrow{b_{1} }\overrightarrow{b_{2} }\overrightarrow{b_{3} }, where \overrightarrow{b_{0} }=\left(1,1,1\right),\overrightarrow{b_{1} }= \left(-1,1,1\right),\overrightarrow{b_{2} }=\left(1,-1,1\right)  and  \overrightarrow{b_{3} }=\left(1,1,-1\right)? How are their volumes related?

We need to use the inverse of T\left(\overrightarrow{x} \right) =\overrightarrow{x_{0} }+\overrightarrow{x}B, namely,

\overrightarrow{x}=\left(\overrightarrow{y} -\overrightarrow{x_{0} }\right)B^{-1},   where \overrightarrow{x_{0} }=\left(1,-1,-1\right)  and  \overrightarrow{y}=T\left(\overrightarrow{x} \right) and

B^{-1}=P^{-1}A^{-1}P= \frac{1}{3}\left[\begin{matrix} 4 & -1 & -1 \\ 2 & 1 & -2 \\ -1 & 1 & 4 \end{matrix} \right] .

For Q1

x_{1}+x_{2}= \overrightarrow{x} \left[\begin{matrix} 1 \\ 1 \\ 0 \end{matrix} \right] =0  if  \overrightarrow{x}=\left(x_{1},x_{2},x_{3}\right)

\Rightarrow \left[\left(y_{1},y_{2},y_{3}\right)-\left(1,-1,-1\right)\right]\cdot \frac{1}{3}\left[\begin{matrix} 4 & -1 & -1 \\ 2 & 1 & -2 \\ -1 & 1 & 4 \end{matrix} \right]\left[\begin{matrix} 1 \\ 1 \\ 0 \end{matrix} \right] =0

\Rightarrow \left( replace  y_{1},y_{2},y_{3}  by  x_{1},x_{2},x_{3}\right) x_{1}+x_{2}=0.

Hence, x_{1}+x_{2}=0 and its image plane are coincident. This is within our expectation because the normal vector (1, 1, 0) of x_{1}+x_{2}=0 is perpendicular to \overrightarrow{v_{1} }=\frac{1}{\sqrt{3} }\left(1,-1,-1\right), the direction of the shearing T (see 1 in (3.8.20)).

Any plane parallel to x_{1}+2x_{2}-x_{3}=3 has equation x_{1}+2x_{2}-x_{3}=c where c is a constant. Then

x_{1}+2x_{2}-x_{3}= \overrightarrow{x} \left[\begin{matrix} 1 \\ 2 \\ -1 \end{matrix} \right] =c

\Rightarrow \left[\left(y_{1},y_{2},y_{3}\right)-\left(1,-1,-1\right)\right]\cdot \frac{1}{3}\left[\begin{matrix} 4 & -1 & -1 \\ 2 & 1 & -2 \\ -1 & 1 & 4 \end{matrix} \right]\left[\begin{matrix} 1 \\ 2 \\ -1 \end{matrix} \right] =c

\Rightarrow y_{1}+2y_{2}-y_{3}=c,

which means that it is an invariant plane.

For Q2 By computation,

T\left(\overrightarrow{b_{0} }\right)=\left(1,-1,-1\right)+\left(1,1,1\right)B=\left(1,-1,-1\right)+\left(\frac{1}{3},\frac{5}{3},\frac{5}{3}\right)=\left(\frac{4}{3},\frac{2}{3},\frac{2}{3}\right),

T\left(\overrightarrow{b_{1} }\right)=\left(1,-1,-1\right)+\left(-1,1,1\right)B=\left(1,-1,-1\right)+\left(-1,1,1\right)=\left(0,0,0\right),

T\left(\overrightarrow{b_{2} }\right)=\left(1,-1,-1\right)+\left(1,-1,1\right)B

=\left(1,-1,-1\right)+\left(\frac{5}{3},-\frac{5}{3},\frac{1}{3}\right)=\left(\frac{8}{3},-\frac{8}{3},-\frac{2}{3}\right),

T\left(\overrightarrow{b_{3} }\right)=\left(1,-1,-1\right)+\left(1,1,-1\right)B

=\left(1,-1,-1\right)+\left(-\frac{1}{3},\frac{7}{3},\frac{1}{3}\right)=\left(\frac{2}{3},\frac{4}{3},-\frac{2}{3}\right).

These four image points form a tetrahedron \Delta T \left(\overrightarrow{b_{0} }\right) \ldots T \left(\overrightarrow{b_{3} }\right) . Thus

the signed volume of \Delta \overrightarrow{b_{0} }\overrightarrow{b_{1} }\overrightarrow{b_{2} }\overrightarrow{b_{3} }= \frac{1}{6}\left|\begin{matrix} \overrightarrow{b_{1} }-\overrightarrow{b_{0} } \\ \overrightarrow{b_{2} }-\overrightarrow{b_{0} } \\ \overrightarrow{b_{3} }-\overrightarrow{b_{0} } \end{matrix} \right|

= \frac{1}{6} \left|\begin{matrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{matrix} \right| =-\frac{4}{3},

the signed volume of \Delta T \left(\overrightarrow{b_{0} }\right) \ldots T \left(\overrightarrow{b_{3} }\right) = \frac{1}{6} \left|\begin{matrix}T \left(\overrightarrow{b_{1} }\right)-T \left(\overrightarrow{b_{0} }\right) \\ T \left(\overrightarrow{b_{2} }\right)-T \left(\overrightarrow{b_{0} }\right) \\ T \left(\overrightarrow{b_{3} }\right)-T \left(\overrightarrow{b_{0} }\right) \end{matrix} \right|

= \frac{1}{6} \left|\begin{matrix} -\frac{4}{3} & -\frac{2}{3} & -\frac{2}{3} \\ \\  \frac{4}{3} & -\frac{10}{3} & -\frac{4}{3} \\ \\  -\frac{2}{3} & \frac{2}{3} & -\frac{4}{3} \end{matrix} \right|

= \frac{1}{6}\cdot \left(-\frac{8}{27} \right)\cdot27=-\frac{4}{3}.

So both have the same volumes.

1

Related Answered Questions

Question: 3.37

Verified Answer:

Both S_{1}  and  S_{2} are two-dime...
Question: 3.26

Verified Answer:

Analysis The characteristic polynomial is ...