Question 8.2: Two particles of mass m1 = m and m2 = 3m are moving with res...

Two particles of mass  m_1 = m  and  m_2 = 3m  are moving with respective velocities  v_1 = (4v , -7v, 0)  and  v_2 = (0, v, 4v)  relative to frame  \phi = \{F; i_k\}.  (a) Find the velocity of the center of mass in Φ. (b) At a certain instant the respective particles are at  x_1 = (0, -1 ,3)  and  x_2 = (8, -1 ,3)  from a fixed point O in Φ. What is the moment about O of the momentum of the center of mass of the system in Φ? (c) What is the moment of momentum of C relative to O?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Solution of (a). To find v*, consider the momentum of the center of mass in   \Phi: \mathbf{p}^*=m(\beta) \mathbf{v}^*,  where  m(\beta)=m_1  +  m_2=4 m.  Then , by (5.7), the total momentum of the system is  \mathbf{p}^*=m_1 \mathbf{v}_1  +  m_2 \mathbf{v}_2=m(4 v,-7 v, 0)+3 m(0, v, 4 v),  i.e.

\mathbf{p}^* \equiv m(\beta) \mathbf{v}^*=\sum_{k=1}^n m_k \mathbf{v}_k=\mathbf{p}(\beta, t)                     (5.7)

\mathbf{p}^*=4 m \mathbf{v}^*=4 m v(1,-1,3);                  (8.28a)

and hence the center of mass has velocity

\mathbf{v}^*=v(\mathbf{i}-\mathbf{j}  +  3 \mathbf{k}).                     (8.28b)

Solution of (b). To determine   \mathbf{h}_O^*=\mathbf{x}^* \times \mathbf{p}^*,  the moment about point O of the momentum of the center of mass in  Φ, we need to determine the position vector x* of the center of mass from O at the instant of interest. From (5.5), the reader will find that the center of mass is at the place from O given by

\mathbf{x}^*=6 \mathbf{i}  –  \mathbf{j}  +  3 \mathbf{k};                (8.28c)

and with (8.28a) the moment about 0 of the momentum of C in Φ is

\mathbf{h}_O^*=\mathbf{x}^* \times \mathbf{p}^*=4 m v\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\6 & -1 & 3 \\ 1 & -1 & 3\end{array}\right|=-20 m v(3 \mathbf{j}  +  \mathbf{k}).                    (8.28d)

Solution of (c). The moment about O of the momentum of C relative to the origin in Φ is given by  \mathbf{h}_O^*=\mathbf{x}^* \times m(\beta) \mathbf{v}^*,   in which   \mathbf{v}^* \equiv \dot{\mathbf{X}}^*=\mathbf{v}_O  +  \dot{\mathbf{x}}^*  in Fig. 8.2. Because point O is fixed in  \Phi, \mathbf{v}_O=\mathbf{0}  and hence  \mathbf{p}^*=\mathbf{p}_O^*.  (In general, of course,  \mathbf{p}^* \neq \mathbf{p}_O^*.)  Then, by (8.26) and (8.28d),  \mathbf{h}_{r O}^*=\mathbf{h}_O^*=-20 m v(3 \mathbf{j}  +  \mathbf{k}).

More generally, (8.24) holds for a system consisting of only a single particle, hence for the center of mass particle alone,

\mathbf{h}_O(\beta, t)=\mathbf{h}_{r O}(\beta, t)  +  m(\beta) \mathbf{x}_O^* \times \mathbf{v}_O                     (8.24)

\mathbf{h}_O^*=\mathbf{h}_{r O}^*  +  m(\beta) \mathbf{x}_O^* \times \mathbf{v}_O.                     (8.28e)

Therefore, when  v_O=0,  we have the special result   \mathbf{h}_O^*=\mathbf{h}_{r O}^*  found in the  example. Characterization of other situations for which this holds is left for the reader.

fig8.2

Related Answered Questions

Question: 8.5

Verified Answer:

The center of mass C of the two coil system has ve...