Question 8.4: The antenna coil system in the previous example has an addit...

The antenna coil system in the previous example has an additional angular velocity Ω normal to the plane of  \mathbf{i}^{\prime}  and k in Fig. 8.5, and relative to its initially oriented shaft frame  1=\varphi=\left\{C ; \mathbf{i}_k\right\},  which is turning with angular velocity ω relative to the ground frame  0=\Phi=\left\{F ; \mathbf{I}_k\right\}  at the instant shown. Find the applied torque about the center of mass required to sustain the motion of the system referred to the shaft frame  2=\varphi^{\prime}=\left\{C ; \mathbf{i}_k^{\prime}\right\}  . Ignore the mass of the control shaft.

Screenshot 2022-10-13 212556
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The torque about C is given by (8.45), so we must first find  h_C  in (8.22) referred to the moving frame . The total angular velocity of the moving frame   2=\varphi^{\prime}=\left\{C ; \mathbf{i}_k^{\prime}\right\}   fixed in the control shaft is   \boldsymbol{\omega}_f \equiv \boldsymbol{\omega}_{20}=\boldsymbol{\omega}_{21}  +  \boldsymbol{\omega}_{10}=\boldsymbol{\Omega}  +  \boldsymbol{\omega}.  Hence, with reference to Fig. 8.5, referred to φ′,

\mathbf{M}_C(\beta, t)=\frac{d \mathbf{h}_C(\beta, t)}{d t}=\frac{d \mathbf{h}_r c(\beta, t)}{d t} .                    (8.45)

\mathbf{h}_C(\beta, t)=\sum_{k=1}^n \rho_k \times m_k \dot{\rho}_k=\mathbf{h}_r(\beta, t)                        (8.22)

\omega_f=-\Omega \mathbf{j}^{\prime}  +  \omega\left(\sin \theta \mathbf{i}^{\prime}  +  \cos \theta \mathbf{k}^{\prime}\right).                   (8.49a)

The velocity of each coil relative to C is  \dot{\rho}_k=(-1)^k \mathbf{v}  +  \omega_f \times \rho_k,  where we recall (8.48a) in which  \mathbf{i} \rightarrow \mathbf{i}^{\prime}.  Specifically,

\dot\rho_1=-\dot\rho_2=vi^\prime+\omega d \cos \theta j^\prime+\Omega d k^\prime.                             (8.49b)

Then (8.22) yields

\mathbf{h}_C=2 \rho_1 \times m \dot{\rho}_1=2 m d^2\left(-\Omega \mathbf{j}^{\prime}  +  \omega \cos \theta \mathbf{k}^{\prime}\right).                 (8.49c)

When θ = 0 and Ω = 0, we recover (8.48c) .

The total torque about C required to sustain the motion of the system is determined by (8.45) for  h_C  given in (8.49c). But  h_C  is a vector referred to a moving reference frame, so we shall need to apply (8.47). With the aid of (8.49a), (8.49c), and noting that \dot d(t) = –v(t)  and  \dot{\theta}=\Omega,  we determine

\frac{\delta \mathbf{h}_C}{\delta t}=2 m d\left[(2 v \Omega  –  d \dot{\Omega}) \mathbf{j}^{\prime}  +  (d \dot{\omega} \cos \theta  –  d \omega \Omega \sin \theta  –  2 v \omega \cos \theta) \mathbf{k}^{\prime}\right],

\begin{aligned}\boldsymbol{\omega}_f \times \mathbf{h}_C &=2 m d^2\left|\begin{array}{ccc}\mathbf{i}^{\prime} & \mathbf{j}^{\prime} & \mathbf{k}^{\prime} \\\omega \sin \theta & -\Omega & \omega \cos \theta \\0 & -\Omega & \omega \cos \theta\end{array}\right| \\&=2 m d^2\left(-\omega^2 \sin \theta \cos \theta \mathbf{j}^{\prime}-\Omega \omega \sin \theta \mathbf{k}^{\prime}\right) .\end{aligned}

Thus, by (8.47), the total moment about C of all external forces exerted on the coil system by the control shaft, by gravity, and by the drive mechanism is

\mathbf{M}_C(\beta, t)=\frac{\delta \mathbf{h}_C(\beta, t)}{\delta t}+\omega_f \times \mathbf{h}_C(\beta, t)                        (8.47)

\begin{aligned}\mathbf{M}_C=& 2 m d\left[\left(2 v \Omega-d \dot{\Omega}  –  d \omega^2 \sin \theta \cos \theta\right) \mathbf{j}^{\prime}\right.\\&\left.  +  (d \dot{\omega} \cos \theta  –  2 d \Omega \omega \sin \theta  –  2 v \omega \cos \theta) \mathbf{k}^{\prime}\right]\end{aligned}                        (8.49d)

When Ω = 0 and θ = 0, the applied torque required to sustain the motion of the system considered initially is   \mathbf{M}_C=2 m d(d \dot{\omega}  –  2 v \omega) \mathbf{k},  which also follows easily from (8.45) and (8.48c) wherein now   \mathbf{k}^{\prime}= \mathbf{k}  is fixed in Φ.

Related Answered Questions

Question: 8.5

Verified Answer:

The center of mass C of the two coil system has ve...